分析 (1)作出图形,然后写出已知、求证,延长EF到D,使FD=EF,利用“边角边”证明△AEF和△CDF全等,根据全等三角形对应边相等可得AE=CD,全等三角形对应角相等可得∠D=∠AEF,再求出CE=CD,根据内错角相等,两直线平行判断出AB∥CD,然后判断出四边形BCDE是平行四边形,根据平行四边形的性质可得DE∥BC,DE=BC.
(2)连接AF并延长,交BC延长线于点M,根据ASA证明△ADF≌△MCF,判断EF是△ABM的中位线,根据三角形中位线定理即可得出结论.
解答 (1)三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
已知:△ABC中,点E、F分别是AB、AC的中点,
求证:EF∥BC且EF=$\frac{1}{2}$BC,
证明:如图,延长EF到D,使FD=EF,
∵点F是AC的中点,
∴AF=CF,
在△AEF和△CDF中,
$\left\{\begin{array}{l}{AF=FC}\\{∠AFE=∠CFD}\\{EF=FD}\end{array}\right.$,
∴△AEF≌△CDF(SAS),
∴AE=CD,∠D=∠AEF,
∴AB∥CD,
∵点E是AB的中点,
∴AE=BE,
∴BE=CD,
∴BE$\stackrel{∥}{=}$CD,
∴四边形BCDE是平行四边形,
∴DE∥BC,DE=BC,
∴DE∥BC且EF=$\frac{1}{2}$BC.
证明:连接AF并延长,交BC延长线于点M,
∵AD∥BC,
∴∠D=∠FCM,
∵F是CD中点,
∴DF=CF,
在△ADF和△MCF中,
$\left\{\begin{array}{l}{∠D=∠FCM}\\{DF=CF}\\{∠AFD=∠MFC}\end{array}\right.$,
∴△ADF≌△MCF(ASA),
∴AF=FM,AD=CM,
∴EF是△ABM的中位线,
∴EF∥BC∥AD,EF=$\frac{1}{2}$BM=$\frac{1}{2}$(AD+BC).
点评 本题实际上考查了梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.其中利用了全等三角形的判定与性质,三角形中位线定理,准确作出辅助线是解题关键.
科目:初中数学 来源: 题型:选择题
A. | 0.10 | B. | 0.12 | C. | 0.15 | D. | 0.18 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x=$\frac{1+2y}{3}$ | B. | x=$\frac{1-2y}{3}$ | C. | y=$\frac{3x-1}{2}$ | D. | y=$\frac{1-3x}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com