精英家教网 > 初中数学 > 题目详情
如图,△ABC中,AB=AC=
2
,∠BAC=90°,DE经过点A,且DE⊥BC,垂足为E,∠DCE=60°.
(1)以点E为中心,逆时针旋转△CDE,使旋转后得到的△C′D′E的边C′D′恰好经过点A,求此时旋转角的大小;
(2)在(1)的情况下,将△C′D′E沿BC向右平移t(0<t<1),设平移后的图形与△ABC重叠部分面积为S,求S与t的函数关系式,并直接写出t的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为体现党和政府对农民健康的关心,解决农民看病难问题,我市某县全面实行新型农村合作医疗,对农民的住院医疗费实行分段报销制.
例如:

某人住院医疗费8000元,按规定可以报销;500×20%+1500×30%+3000×35%+3000×40%=2800(元)
该县有四位农民看病分别花去了1800元、2500元、6000元、22000元住院医药费,请计算应该给这四位农民各报销多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

以下说法正确的有(  )
①正八边形的每个内角都是135°;
27
1
3
是同类二次根式;
③长度等于半径的弦所对的圆周角为30°;
④对角线相等且垂直的四边形是正方形.
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

已知两条平行线l1、l2之间的距离为6,截线CD分别交l1、l2于C、D两点,一直角的顶点P在线段CD上运动(点P不与点C、D重合),直角的两边分别交l1、l2于A、B两点.
(1)操作发现
如图1,过点P作直线l3∥l1,作PE⊥l1,点E是垂足,过点B作BF⊥l3,点F是垂足.此时,小明认为△PEA∽△PFB,你同意吗?为什么?
(2)猜想论证
将直角∠APB从图1的位置开始,绕点P顺时针旋转,在这一过程中,试观察、猜想:当AE满足什么条件时,以点P、A、B为顶点的三角形是等腰三角形?在图2中画出图形,证明你的猜想.
(3)延伸探究
在(2)的条件下,当截线CD与直线l1所夹的钝角为150°时,设CP=x,试探究:是否存在实数x,使△PAB的边AB的长为4
5
?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC和△AEF中,∠BAC=∠EAF=α,AB=AC,AE=AF,点D是BC的中点,点M是EF的中点,连接CE,点N是CE的中点,连接DN,MN.

(1)如图2,将△AEF绕点A旋转,使点E,F分别在边BA,CA的延长线上.
①试探究线段DN与MN的数量关系,并证明你的结论;
②此时,∠DNM与α之间存在等量关系,这个等量关系为
 
(不必说明理由).
(2)将△AEF绕点A旋转,使点E落在△ABC内部,如图3,此时,你在(1)中得到的①、②两个结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

取一张矩形纸片ABCD,沿AD边上任意一点M折叠后,点D、C分别落在D′、C′的位置,如图所示.设折痕为MN,D′C′交BC于点E,且∠AM D′=α,∠NE C′=β.
(1)探究α、β之间的数量关系,并说明理由.
(2)折叠后是否存在△AD′M与△C′EN全等的情况?若存在,请给出证明;若不存在,请直接作出否定的回答,不必说明理由.
(3)设α=30°,当△AD′M是等腰三角形时,试确定点M的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:

(1)如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF(S表示面积)
(2)如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.
(3)利用(2)的结论解决下列问题:
我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.(如图3)若O是△ABC的重心,连结AO并延长交BC于D,则
AO
AD
=
2
3
,这样面积比就有一些“漂亮”结论,利用这些性质解决以下问题.
若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图4),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究
S四边形BCHG
S△AGH
的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠ADC=110°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CFD=(  )
A、50°B、60°C、70°D、80°

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,△ABC内接于⊙O,∠BAC=60°,高线AD,BE相交于H,直线OH与AB,AC分别交于Q,P.下列结论:①∠BAO=∠CAD;②AH=AO;③△AQP是等腰三角形;④若∠NAB=∠MAC=15°,则
AM+AN
AB+AC
=
6
3
.其中正确的有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

同步练习册答案