精英家教网 > 初中数学 > 题目详情
13.已知抛物线y=-x2+bx+c的部分图象如图所示.
(1)求b、c的值;  
(2)求y的最大值;
(3)写出当y<0时,x的取值范围.

分析 (1)由函数的图象可知c=3,把(1,0)代入抛物线的解析式即可求出b的值;
(2)由(1)中的抛物线解析式即可求出抛物线的对称轴和y的最大值;
(3)根据抛物线与x轴的交点坐标及对称轴求出它与x轴的另一交点坐标,求当y<0,x的取值范围就是求函数图象位于x轴的下方的图象相对应的自变量x的取值范围.

解答 解:(1)由函数的图象可知c=3,把(1,0)代入y=-x2+bx-c得,b=-2,
所以b=-2,c=-3;
(2)由(1)可知y=-x2-2x+3,
∴y=-(x+1)2+4,
∴直线x=-1,y=4;
(3)由图象知,抛物线与x轴交于(1,0),对称轴为x=-1,
∴抛物线与x轴的另一交点坐标为(-3,0),
∵y<0时,函数的图象位于x轴的下方,
∴x>1或x<-3.

点评 本题考查了抛物线和x轴的交点,其中△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知如图,△ABC中,∠C=90°,AB=10,BC=6,
(1)计算AC的长度;
(2)计算AB边上的中线CD的长度.
(3)计算AB边上的高CE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1,将两个完全相同的三角形纸片ABC和A′B′C重合放置,其中∠C=90°,∠B=∠B′=30°,AC=AC′=2.
(1)如图2,固定△ABC,将△A′B′C绕点C旋转,当点A′恰好落在AB边上时,
①∠CA′B′=60°;旋转角ɑ=60°(0°<ɑ<90°),线段A′B′与AC的位置关系是平行;
②设△A′BC的面积为S1,△AB′C的面积为S2,则S1与S2的数量关系是什么?证明你的结论;
(2)如图3,∠MON=60°,OP平分∠MON,OP=PN=4,PQ∥MO交ON于点Q.若在射线OM上存在点F,使S△PNF=S△OPQ,请直接写出相应的OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算与解方程:
(1)($\sqrt{3}$)0+(-2)2-($\frac{1}{3}$)-2;         
(2)$\sqrt{(-3)^{2}}$-|2-$\sqrt{2}$|-$\root{3}{8}$
(3)(x+2)2-64=0;                  
(4)(x-3)3=-27.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.当x=-$\frac{1}{2}$时,求多项武3-2x2+3x+3x2-5x-7的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:20160+($\frac{1}{2}$)-1-$\sqrt{2}$sin45°+tan60°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在平面直角坐标系中,边长为$\sqrt{2}$的正方形ABCD的顶点A,B在x轴上,连接OD、BD、△BOD的外心I在中线上,BF与AD交于点E,连接OE,若点M是直线BF上的一动点,且△BMD与△OED相似,则点M的坐标(1,$\sqrt{2}$-1)或(-$\sqrt{2}$,$\sqrt{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列各式,①-(-2); ②-|-2|; ③-23; ④-(-2)2.计算结果为负数的个数有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.将抛物线y=2x2向左平移2个单位,再向上平移3个单位得到的抛物线解析式是(  )
A.y=2(x+2)2+3B.y=2(x-2)2-3C.y=2(x+2)2-3D.y=2(x-2)2+3

查看答案和解析>>

同步练习册答案