如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F。
(1)试说明△ABD≌△BCE;
(2)△AEF与△ABE相似吗?说说你的理由;
(3)BD2=AD·DF成立吗?若成立,请说明理由。
(1)根据等边三角形的性质可得AB=BC,∠ABD=∠BCE,再结合BD=CE即可证得结论;(2)相似;(3)成立
解析试题分析:(1)根据等边三角形的性质可得AB=BC,∠ABD=∠BCE,再结合BD=CE即可证得结论;
(2)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可得∠ABE=∠EAF,又∠AEF=∠BEA,即可证得结论;
(3)由△ABD≌△BCE得:∠BAD=∠FBD,又∠BDF=∠ADB,即可证得△BDF∽△ADB,再根据相似三角形的性质求解即可.
(1)∵△ABC是等边三角形,
∴AB=BC,∠ABD=∠BCE,
又∵BD=CE,
∴△ABD≌△BCE;
(2)△AEF与△ABE相似.
由(1)得:∠BAD=∠CBE,
又∵∠ABC=∠BAC,
∴∠ABE=∠EAF,
又∵∠AEF=∠BEA,
∴△AEF∽△BEA;
(3)成立
由(1)得:∠BAD=∠FBD,
又∵∠BDF=∠ADB,
∴△BDF∽△ADB,
∴,即BD2=AD•DF.
考点:等边三角形的性质,相似三角形的判定和性质
点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com