【题目】已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP。将△AEF绕点A逆时针旋转。
(1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为 ,数量关系为 。
(2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立。
(3)若AB=3,AE=1,则线段AP的取值范围为 。
【答案】(1)AP⊥BF,(2)见解析;(3)1≤AP≤2
【解析】
(1)根据直角三角形斜边中线定理可得 ,即△APD为等腰三角形推出∠DAP=∠EDA,可证△AED≌△ABF可得∠ABF=∠EDA=∠DAP 且 BF=ED由三角形内角和可得∠AOF=90°即AP⊥BF由全等可得 即
(2)延长AP至Q点使得DQ∥AE,PA延长线交于G点,利用P是DE中点,构造△AEP≌△PDQ可得∠EAP=∠PQD,DQ=AE=FA可得∠QDA=∠FAB可证△FAB≌△QDA 得到∠AFB=∠PQD=∠EAP,AQ=FB由三角形内角和可得∠FAG=90°得出AG⊥FB即AP⊥BF由全等可得
(3)由于 即求BF的取值范围,当BF最小时,即F在AB上,此时BF=2,AP=1
当BF最大时,即F在BA延长线上,此时BF=4,AP=2可得1≤AP≤2
(1)
根据直角三角形斜边中线定理有AP是△AED中线可得 ,即△APD为等腰三角形。
∴∠DAP=∠EDA
又AE=AF,∠BAF=∠DAE=90°,AB=AD
∴△AED≌△ABF
∴∠ABF=∠EDA=∠DAP 且 BF=ED
设AP与BF相交于点O
∴∠ABF+∠AFB=90°=∠DAP+∠AFB
∴∠AOF=90°即AP⊥BF
∴ 即
故答案为:AP⊥BF,
(2)
延长AP至Q点使得DQ∥AE,PA延长线交于G点
∴∠EAP=∠PQD,∠AEP=∠QDP
∵P是DE中点,
∴EP=DP
∴△AEP≌△PDQ
则∠EAP=∠PQD,DQ=AE=FA
∠QDA=180°-(∠PAD+∠PQD)
=180°-∠EAD
而∠FAB=180°-∠EAD,则∠QDA=∠FAB
∵AF=DQ,∠QDA=∠FAB ,AB=AD
∴△FAB≌△QDA
∴∠AFB=∠PQD=∠EAP,AQ=FB
而∠EAP+∠FAG=90°
∴∠AFB+∠FAG=90°
∴∠FAG=90°
∴AG⊥FB
即AP⊥BF
又
∴
(3)∵
∴即求BF的取值范围
BF最小时,即F在AB上,此时BF=2,AP=1
BF最大时,即F在BA延长线上,此时BF=4,AP=2
∴ 1≤AP≤2
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,AC为对角线,延长CD至点E使CE=CA,连接AE。F为AB上一点,且BF=DE,连接FC.
(1)若DE=1,CF=2,求CD的长。
(2)如图2,点G为线段AE的中点,连接BG交AC于H,若∠BHC+∠ABG=600,求证:AF+CE=AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学上学期的数学历次测验成绩如下表所示:
测验类别 | 平时测验 | 期中测验 | 期末测验 | ||
第1次 | 第2次 | 第3次 | |||
成绩 | 100 | 106 | 106 | 105 | 110 |
(1)该同学上学期5次测验成绩的众数为 ,中位数为 ;
(2)该同学上学期数学平时成绩的平均数为 ;
(3)该同学上学期的总成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照2:3:5的比例计算所得,求该同学上学期数学学科的总评成绩(结果保留整数)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学生参加植树造林,甲班每天比乙班多植5棵树,甲班植80棵树与乙班植70棵树所用的天数相等,求甲、乙两班每天各植树多少棵。下面列式错误的是 ( )
A.设甲班每天植树x棵,则B.设乙班每天植树x棵,则
C.设甲班在x天植树80棵,则D.设乙班在x天植树70棵,则
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V(m3)的反比例函数,且当V=0.8m3时,P=120kPa。
(1)求P与V之间的函数表达式;
(2)当气球内的气压大于100kPa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点.
(1)当EF∥BC时,如图①所示,求证:EF=BE+CF.
(2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.
(3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,直接写出结论;如果变化,请直接写出EF,BE,CF之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.
(2)在直角坐标系内,一次函数y=kx+b的图象经过三点A(2,0),B(0,2),C(m,3).求这个一次函数解析式并求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.有下列结论:①FD=FE;②AH=2CD;③BCAD=AE2;④S△ABC=2S△ADF.其中正确结论的序号是_____.(把你认为正确结论的序号都填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
(1)根据图示填写下表:
平均数/分 | 中位数/分 | 众数/分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com