精英家教网 > 初中数学 > 题目详情
(2003•绍兴)已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题:
(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交于点C,D.
①在图甲中,证明:PC=PD;
②在图乙中,点G是CD与OP的交点,且PG=PD,求△POD与△PDG的面积之比;
(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长.

【答案】分析:(1)①可通过构建全等三角形来求解;②可根据相似比来求面积比.
(2)分两种情况进行讨论:①当C在OA上上时;②当C在OA延长线上时;
解答:解:(1)①证明:过P作PH⊥OA,PN⊥OB,垂足分别为H,N,得∠HPN=90°
∴∠HPC+∠CPN=90°
∵∠CPN+∠NPD=90°
∴∠HPC=∠NPD
∵OM是∠AOB的平分线
∴PH=PN
又∵∠PHC=∠PND=90°
∴△PCH≌△PDN
∴PC=PD
②∵PC=PD
∴∠PDG=45°
∵∠POD=45°
∴∠PDG=∠POD
∵∠GPD=∠DPO
∴△POD∽△PDG


(2)①若PC与边OA相交,
∵∠PDE>∠CDO
令△PDE∽△OCD
∴∠CDO=∠PED
∴CE=CD
∵CO⊥ED
∴OE=OD
∴OP=ED=OD=1
②若PC与边OA的反向延长线相交
过P作PH⊥OA,PN⊥OB,垂足分别为H,N,
∵∠PED>∠EDC
令△PDE∽△ODC
∴∠PDE=∠ODC
∵∠OEC=∠PED
∴∠PDE=∠HCP
∵PH=PN,Rt△PHC≌Rt△PND
∴HC=ND,PC=PD
∴∠PDC=45°
∴∠PDO=∠PCH=22.5°
∴∠OPC=180°-∠POC-∠OCP=22.5°
∴OP=OC.设OP=x,则OH=ON=
∴HC=DN=OD-ON=1-
∵HC=HO+OC=+x
∴1-=+x
∴x=
即OP=
点评:本题主要考查了直角三角形的性质,全等三角形的判定与性质以及相似三角形的判定和性质等知识点,根据三角形相似或全等得出线段之间以及角之间的关系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2003•绍兴)已知二次函数的图象的顶点坐标为(-2,-3),且图象过点(-3,-2).
(1)求此二次函数的解析式;
(2)设此二次函数的图象与x轴交于A,B两点,O为坐标原点,求线段OA,OB的长度之和.

查看答案和解析>>

科目:初中数学 来源:2003年浙江省绍兴市中考数学试卷(解析版) 题型:解答题

(2003•绍兴)已知二次函数的图象的顶点坐标为(-2,-3),且图象过点(-3,-2).
(1)求此二次函数的解析式;
(2)设此二次函数的图象与x轴交于A,B两点,O为坐标原点,求线段OA,OB的长度之和.

查看答案和解析>>

科目:初中数学 来源:2003年浙江省绍兴市中考数学试卷(解析版) 题型:解答题

(2003•绍兴)已知关于x的方程x2-2x+k-1=0有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源:2003年浙江省绍兴市中考数学试卷(解析版) 题型:选择题

(2003•绍兴)已知,则代数式的值为( )
A.-
B.
C.3
D.4

查看答案和解析>>

同步练习册答案