精英家教网 > 初中数学 > 题目详情

【题目】△ABC中,∠A=30°,∠B=45°,AC=4,求AB的长?

【答案】解:过点C作CD⊥AB于D点, 在Rt△ADC中,∠A=30°,AC=4,
∴CD= AC= ×4=2,
∴AD= = =2
在Rt△CDB中,∠B=45°,CD=2,
∴CD=DB=2,
∴AB=AD+DB=2 +2.

【解析】首先过点C作CD⊥AB于D点,由在Rt△ADC中,∠A=30°,AC=4,即可求得CD与AD的长,又由在Rt△CDB中,∠B=45°,即可求得BD的长,继而求得答案.
【考点精析】掌握解直角三角形是解答本题的根本,需要知道解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题探究:
①新知学习
若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).
②解决问题

已知等边三角形ABC的边长为2.
(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;
(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;
(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM<1),E是DC上的一点,连接ME,ME与AD交于点O,且SMOA=SDOE
①求证:ME是△ABC的面径;
②连接AE,求证:MD∥AE;
(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A,B两点(点A在点B的左侧,与y轴交于点C,点A、点B的横坐标是一元二次方程x2﹣4x﹣12=0的两个根.

(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图,在二次函数对称轴上是否存在点P,使△APC的周长最小?若存在,请求出点P的坐标;若不存在,那个说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:
(1)x(x+4)=﹣3(x+4);
(2)(2x+1)(x﹣3)=﹣6.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点G,H分别是BC、CD边上的点,直线GH与AB、AD的延长线相交于点E,F,连接AG、AH.
(1)当BG=2,DH=3时,则GH:HF= , ∠AGH=°;
(2)若BG=3,DH=1,求DF、EG的长;
(3)设BG=x,DH=y,若△ABG∽△FDH,求y与x之间的函数关系式,并求出y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线经过A(﹣1,0),C(0,﹣5)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)设点P为抛物线上的一个动点,连接PB、PC,若△BPC是以BC为直角边的直角三角形,求此时点P的坐标;
(3)在抛物线上BC段有另一个动点Q,以点Q为圆心作⊙Q,使得⊙Q与直线BC相切,在运动的过程中是否存在一个最大⊙Q?若存在,请直接写出最大⊙Q的半径;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣2x

x

﹣1

0

1

2

3

y

0

﹣1


(1)请在表内的空格中填入适当的数;
(2)请在所给的平面直角坐标系中画出y=x2﹣2x的图象;
(3)当x再什么范围内时,y随x的增大而减小;
(4)观察y=x2﹣2x的图象,当x在什么范围内时,y>0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1) ﹣(2017﹣π)0﹣4cos45°+(﹣3)2
(2)先化简,再求代数式 ÷ 的值,其中a=3tan30°﹣2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交 的图象于点Ai , 交直线 于点Bi . 则 =

查看答案和解析>>

同步练习册答案