精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,F为垂足.
(1)求证:直线DE是⊙O的切线;
(2)若BE=数学公式AB=2,求线段AD、AB、弧BD围成的面积.

解:(1)连接OD,BD;
∵AB=BC(已知),
∴∠A=∠C(等边对等角).
∵OA=OD(⊙O的半径),
∴∠A=∠ADO(等边对等角),
∴∠C=∠ADO(等量代换),
∴OD∥BC(同位角相等,两直线平行).
又∵DF⊥BC,
∴OD⊥DE.
∵点D在⊙O上,
∴直线DE是⊙O的切线;

(2)∵OD⊥DE,
∴∠ODE=90°.
∵BE=AB=2,
∴OB=BE=2,
∴OD=OB=OE,
∴∠E=30°,
∴∠DOB=60°,
∴△ODB是等边三角形,
∴∠DBA=60°,
∴S△ABDAB•BDsin∠ABD=×4×2×=2,S扇形OBD==,S△OBD=OB•ODsin∠DOB=×2×2×=
∴线段AD、AB、弧BD围成的面积=S△ABD+S扇形OBD-S△OBD=2+-=+
分析:(1)要想证DE是⊙O的切线,只要连接OD,求证OD⊥DE即可;
(2)线段AD、AB、弧BD围成的面积=S△ABD+S扇形OBD-S△OBD
点评:本题考查了切线的判定与性质、等腰三角形的性质以及扇形面积的计算等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案