精英家教网 > 初中数学 > 题目详情
14.已知$\frac{a-b}{x}$=$\frac{b-c}{y}$=$\frac{c-a}{z}$≠0,求x+y+z的值.

分析 设$\frac{a-b}{x}$=$\frac{b-c}{y}$=$\frac{c-a}{z}$=k,根据比例的性质表示出x、y、z,代入计算即可得到答案.

解答 解:设$\frac{a-b}{x}$=$\frac{b-c}{y}$=$\frac{c-a}{z}$=k,
则x=ka-kb,y=kb-kc,z=kc-ka,
x+y+z
=ka-kb+kb-kc+kc-ka
=0.

点评 本题考查的是比例的性质,正确设出参数、灵活运用比例的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,已知AB∥CF,O为直线CF上一点,且OB平分∠AOE,ED⊥CF于D,且∠OBF=∠OED,∠BFC=∠A,那么OB和CF有怎样的位置关系?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.四边形ABCD为矩形,H、F为AD、BC中点,BH、AF、DF、CH是∠B、∠A、∠D、∠C的角平分线,证明EFGH为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知:C为线段AB上任意一点,M是AC的中点,N是BC的中点.
(1)若AB=10cm,AC=4cm,求MN的长;
(2)若AB=a,求MN的长;
(3)点C在AB上移动时,其他已知条件不变,此时MN的长是否改变?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,一次函数y=ax+b的图象与反比例函数y=$\frac{k}{x}$的图象交于A,B两点,与x轴交于点C,与y轴交于点D,点A的坐标为(-2,1),点B的坐标为($\frac{1}{2}$,m).
(1)求反比例函数与一次函数的表达式;
(2)求△AOB的面积;
(3)根据图象写出当一次函数的值小于反比例函数的值时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,△ABC和△DBE为等腰直角三角形,且AD=2,AE=2$\sqrt{3}$,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,BC=10,cosC=$\frac{1}{8}$,AC=8,求∠B的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:点B,E,F,C在同一条直线上,AB=CD,BF=CE,AE=DF.求证:AF=DE.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年江苏省七年级下学期第一次课堂调研数学试卷(解析版) 题型:填空题

已知m+n=2,mn=-2,则(1-m)(1-n)=___________。

查看答案和解析>>

同步练习册答案