精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.
(1)直线CE与⊙O相切.…(1分)
理由:连接OE,
∵四边形ABCD是矩形,
∴∠B=∠D=∠BAD=90°,BCAD,CD=AB,…(2分)
∴∠DCE+∠DEC=90°,∠ACB=∠DAC,
又∠DCE=∠ACB,
∴∠DEC+∠DAC=90°,
∵OE=OA,
∴∠OEA=∠DAC,
∴∠DEC+∠OEA=90°,
∴∠OEC=90°,
∴OE⊥EC,…(3分)
∵OE为圆O半径,
∴直线CE与⊙O相切;…(4分)

(2)∵∠B=∠D,∠DCE=∠ACB,
∴△CDE△CBA,…(5分)
BC
DC
=
AB
DE
,…(6分)
又CD=AB=
2
,BC=2,
∴DE=1
根据勾股定理得EC=
3

又AC=
AB2+BC2
=
6
,…(7分)
设OA为x,则(
3
2+x2=(
6
-x)2
解得x=
6
4

∴⊙O的半径为
6
4
.…(8分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,PB为⊙O的切线,B为切点,连PO交⊙O于点A,PA=2,PO=5,则PB的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.
(1)在图中作出⊙O;(不写作法,保留作图痕迹)
(2)求证:BC为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).
(1)求线段AD所在直线的函数表达式;
(2)动点P从点A出发,以每秒1个单位长度的速度,按照A?D?C?B?A的顺序在菱形的边上匀速运动一周,设运动时间为t秒、求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知PA,PB分别切⊙O于A、B,CD切⊙O于E,PO=13,AO=5,则△PCD周长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙E的直径,C是直线AB上一点,CD切⊙E于点D,且∠A=25°,则∠C=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点D.连接OE、AC,已知∠POE=2∠CAB,∠P=∠E.
(1)求证:CE⊥AB;
(2)求证:PC是⊙O的切线;
(3)若BD=20D,PB=9,求⊙O的半径及tan∠P的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA为⊙O直径,过弧AC的中点H作PC的垂线交PC的延长线于点B,若HB=6cm,BC=4cm,求⊙O直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA是⊙O的直径,PC是⊙O的弦,过AC弧的中点H作PC的垂线交PC的延长线于点B.若HB=6cm,BC=4cm,则⊙O的直径为(  )
A.2
13
cm
B.3
17
cm
C.13cmD.6
13
cm

查看答案和解析>>

同步练习册答案