精英家教网 > 初中数学 > 题目详情
已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.
(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);
(2)
AF
AN
AP
AD
是否相等?请你说明理由;
(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)

(1)如图:

(2)解法一:
AF
AN
AP
AD
不相等.
假设
AF
AN
=
AP
AD

则由相似三角形的性质,得MNDC,
∵∠D=90°
∴DC⊥AD
∴MN⊥AD
∵据题意得,A与P关于MN对称,
∴MN⊥AP
∵据题意,P与D不重合,
∴这与“过一点(A)只能作一条直线与已知直线(MN)垂直”矛盾,
∴假设不成立,
AF
AN
=
AP
AD
不成立;

解法二:
AF
AN
AP
AD
不相等.
理由如下:
∵P,A关于MN对称,
∴MN垂直平分AP
∴cos∠FAN=
AF
AN

∵∠D=90°
∴cos∠PAD=
AD
AP

∵∠FAN=∠PAD
AF
AN
=
AD
AP

∵P不与D重合,P在边DC上
∴AD≠AP
AD
AP
AP
AD

从而
AF
AN
AP
AD



(3)∵AM是⊙O的切线,
∴∠AMP=90°
∴∠CMP+∠AMB=90°
∵∠BAM+∠AMB=90°
∴∠CMP=∠BAM
∵MN垂直平分AP,
∴MA=MP
∵∠B=∠C=90°
∴△ABM≌△MCP
∴MC=AB=4
设PD=x,则CP=4-x
∴BM=PC=4-x
连接HO并延长交BC于J,
∵AD是⊙O的切线
∴∠JHD=90°
∴HDCJ为矩形
∴OJCP
∴△MOJ△MPC
∴OJ:CP=MO:MP=1:2
∴OJ=
1
2
(4-x)
OH=
1
2
MP=4-OJ=
1
2
(4+x)
∵MC2=MP2-CP2
∴(4+x)2-(4-x)2=16
解得:x=1,即PD=1,PC=3
∴BC=BM+MC=PC+AB=3+4=7.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,以AB为直径的⊙O交AC于点D,直径AB左侧的半圆上有一点E,连结EB、ED,∠CBD=∠E.
(1)求证:BC是⊙O的切线;
(2)若∠E=30°,BC=
4
3
3
,求阴影部分的面积.(计算结果精确到0.1)(参考数值:π≈3.14,
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:AB是⊙O的直径,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.
(1)求证:CD是⊙O的切线;
(2)若AB=2
2
,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点A、B、D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB=40°,直线BC与⊙O的位置关系为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AM、AN分别切⊙O于M、N两点,点B在⊙O上,且∠MBN=70°,则∠A=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,且∠EAF=80°,则图中阴影部分的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线MN经过⊙O上的点A,点B在MN上,连OB交⊙O于C点,且点C是OB的中点,AC=
1
2
OB,若点P是⊙O上的一个动点,当AB=2
3
时,求△APC的面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(教材变式题)如图所示,在△ABC中,AB=6,AC=8,∠BAC=60°,以BC边上一点作⊙O分别与AB,AC边相切,求⊙O的半径r.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O直径,BC切⊙O于B,CO交⊙O交于D,AD的延长线交BC于E,若∠C=20°,求∠A的度数.

查看答案和解析>>

同步练习册答案