【题目】如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在⊙O上.
(1)求∠AED的度数;
(2)若⊙O的半径为2,则的长为多少?
(3)连接OD,OE,当∠DOE=90°时,AE恰好是⊙O的内接正n边形的一边,求n的值.
【答案】(1)∠AED=120°;(2)π;(3)n=12.
【解析】
(1)连接BD,根据圆的内接四边形的性质得出∠BAD的度数,由AB=AD,可证得△ABD是等边三角形,求得∠ABD=60°,再利用圆的内接四边形的性质,即可求得∠E的度数;
(2)连接OA,由圆周角定理求出∠AOD的度数,由弧长公式即可得出的长;
(3)首先连接OA,由∠ABD=60°,利用圆周角定理,即可求得∠AOD的度数,继而求得∠AOE的度数,即可得出结果.
(1)连接BD,如图1所示.
∵四边形ABCD是⊙O的内接四边形,
∴∠BAD+∠C=180°.
∵∠C=120°,
∴∠BAD=60°.
∵AB=AD,
∴△ABD是等边三角形,
∴∠ABD=60°.
∵四边形ABDE是⊙O的内接四边形,
∴∠AED+∠ABD=180°,
∴∠AED=120°.
(2)连接OA,OD,如图2.
∵∠AOD=2∠ABD=120°,
∴的长=.
(3)如图所示.
∵∠ABD=60°,
∴∠AOD=2∠ABD=120°,
∵∠DOE=90°,
∴∠AOE=∠AOD-∠DOE=30°,
∴n==12.
科目:初中数学 来源: 题型:
【题目】已知:在Rt△ABC中, ∠ACB=90°,AC=BC, D是线段AB上一点,连结CD,将线段CD绕点C 逆时针旋转90°得到线段CE,连结DE,BE.
(1)依题意补全图形;
(2)若用含的代数式表示
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】( 1)计算: ﹣4sin30°+(2015﹣π)0﹣(﹣3)2
(2)先化简,再求值:1﹣,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知方程+px+q=0的两个根是,,那么+=-p, =q,反过来,如果+=-p, =q,那么以,为两根的一元二次方程是+px+q=0.请根据以上结论,解决下列问题:
(1)已知关于x的方程+mx+n=0(n≠0),求出—个一元二次方程,使它的两根分别是已知方程两根的倒数.
(2)已知a、b满足-15a-5=0,-15b-5=0,求的值.
(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数c的最小值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图中实线所示,函数y=|a(x﹣1)2﹣1|的图象经过原点,小明同学研究得出下面结论:
①a=1;②若函数y随x的增大而减小,则x的取值范围一定是x<0;
③若方程|a(x﹣1)2﹣1|=k有两个实数解,则k的取值范围是k>1;
④若M(m1,n),N(m2,n),P(m3,n),Q(m4,n)(n>0)是上述函数图象的四个不同点,且m1<m2<m3<m4,则有m2+m3﹣m1=m4.其中正确的结论有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣12n+36+|n﹣2m|=0.
(1)求A、B两点的坐标;
(2)若点D为AB中点,延长DE交x轴于点F,在ED的延长线上取点G,使DG=DF,连接BG.
①BG与y轴的位置关系怎样?说明理由; ②求OF的长;
(3)如图2,若点F的坐标为(10,10),E是y轴的正半轴上一动点,P是直线AB上一点,且P的横坐标为6,是否存在点E使△EFP为等腰直角三角形?若存在,求出点E的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.
(1)如图1,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).
(2)如图2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙点P (尺规作图,不写作法,保留作图痕迹),并直接写出∠BPC的度数是 .
(3)等边三角形的巧妙点的个数有( )
A.2 B.6 C.10 D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,,,,四点在反比例函数的图象上,线段,都过原点,点的坐标为,点点纵坐标为,连接,,,.
求该反比例函数的解析式;
当时,写出的取值范围;
求四边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com