精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,DE分别为ABAC上的点,线段BECD相交于点O,且

求证:

求证:

MN分别是BECD的中点,过MN的直线交ABP,交ACQ,线段APAQ相等吗?为什么?

【答案】(1)证明见解析;(2)证明见解析;(3),理由见解析

【解析】试题分析:(1)根据已知条件得到∠DOB=A,由于∠ABE=ABE,于是得到结论;
2)延长CD,在CD延长线上取一点F,使BF=BD,根据等腰三角形的性质得到∠BDF=BFD,根据三角形的外角的性质得到∠BDF=BEC,于是得到∠BFD=BEC,根据全等三角形的性质即可得到结论;
3)取BC的中点G,连接GMGN,根据三角形中位线的性质得到GMCEGM=CEGNBDGN=BD,根据平行线的性质得到∠2=43=1,等量代换得到∠1=2,于是得到AP=AQ

试题解析: 证明:

解:延长CD,在CD延长线上取一点F,使

中,

解:

理由:取BC的中点G,连接

分别是的中点,

是中位线,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】回答下列问题:

1)如图所示的甲、乙两个平面图形能折什么几何体?

2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?

3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.

(规律探索)

(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影11__________

如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影21()2_______

同种操作,如图3S阴影31()2()3__________

如图4S阴影41()2()3()4___________

……

若同种地操作n次,则S阴影n1()2()3-…-()n_________.

(规律归纳)

(2)直接写出+…+的化简结果:_________.

(规律应用)

(3)直接写出算式+…+的值:__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如点MN把线段AB分割成AMMNBN,若以AMMNBN,为边的三角形是一个直角三角形,则称点MN是线段AB的勾股分割点.

1)如图2,已知点CD是线段AB的勾股分割点,若AC=3DB=4,求CD的长;

2)如图3,在正方形ABCD中,∠MAM=45°,角的两边AMAN分别交BDEF(不与端点重合),求证:EFBD的勾股分割点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图1,ABCD ,.求度数.

小明的思路是:如图2,过PPEAB,通过平行线性质,可得 _______.

问题迁移:如图3,ADBC,点P在射线OM上运动,

(1)当点PAB两点之间运动时, 之间有何数量关系?请说明理由.

(2)如果点PAB两点外侧运动时(点P与点ABO三点不重合),请你直接写出之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x,使第2次输出的数也是x,则x_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若反比例函数与一次函数的图象都经过点A2

1)求点A的坐标;

2)求一次函数的解析式;

3)设O为坐标原点,若两个函数图像的另一个交点为B,求AOB的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019女排世界杯于914月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜(

A.10B.11C.12D.13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边ABAC上,且AD=AE,连接BECD,交于点F.

(1)求证:∠ABE=∠ACD

(2)求证:过点AF的直线垂直平分线段BC.

查看答案和解析>>

同步练习册答案