精英家教网 > 初中数学 > 题目详情
如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1
(1)若c=a1,求证:a=kc;
(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;
(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.
精英家教网
分析:(1)已知了两个三角形的相似比为k,则对应边a=ka1,将所给的条件等量代换即可得到所求的结论;
(2)此题是开放题,可先选取△ABC的三边长,然后以c的长作为a1的值,再根据相似比得到△A1B1C1的另外两边的长,只要符合两个三角形的三边及相似比都是整数即可;
(3)首先根据已知条件求出a、b与c的关系,然后根据三角形三边关系定理来判断题目所给出的情况是否成立.
解答:(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),
a
a1
=k,a=ka1
又∵c=a1
∴a=kc;

(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;
此时
a
a1
=
b
b1
=
c
c1
=2,
∴△ABC∽△A1B1C1且c=a1

(3)解:不存在这样的△ABC和△A1B1C1,理由如下:
若k=2,则a=2a1,b=2b1,c=2c1
又∵b=a1,c=b1
∴a=2a1=2b=4b1=4c;
∴b=2c;
∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;
故不存在这样的△ABC和△A1B1C1,使得k=2.
点评:此题主要考查的是相似三角形的性质及三角形三边关系定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于直线x=-1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;
(2)求四边形ABED的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想:△CGH是什么特殊的三角形,并加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h(要求尺规作图,不写作法和证明)
(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C关于X轴对称的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知△ABC是锐角三角形,且∠A=50°,高BE、CF相交于点O,求∠BOC的度数.

查看答案和解析>>

同步练习册答案