精英家教网 > 初中数学 > 题目详情

【题目】综合与探究

如图,抛物线y=x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点PPM⊥x轴,垂足为点M,PMBC于点Q,过点PPE∥ACx轴于点E,交BC于点F.

(1)求A,B,C三点的坐标;

(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;

(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.

【答案】(1)C(0,﹣4);(2)Q点坐标为(﹣4)或(1,﹣3); (3)m=2时,QF有最大值.

【解析】

(1)解方程x2x-4=0A(-3,0),B(4,0),计算自变量为0时的二次函数值得C点坐标;

(2)利用勾股定理计算出AC=5,利用待定系数法可求得直线BC的解析式为y=x-4,则可设Q(m,m-4)(0<m<4),讨论:当CQ=CA时,则m2+(m-4+4)2=52

AQ=AC时,(m+3)2+(m-4)2=52;当QA=QC时,(m+3)2+(m-4)2=52,然后分别解方程求出m即可得到对应的Q点坐标;

(3)过点FFGPQ于点G,如图,由OBC为等腰直角三角形.可判断FQG为等腰直角三角形,则FG=QG=FQ,再证明FGP~AOC得到,则PG=FQ,所以PQ=FQ,于是得到FQ=PQ,设P(m,m2-m-4)(0<m<4),则Q(m,m-4),利用PQ=-m2+m得到FQ=(-m2+m),然后利用二次函数的性质解决问题.

(1)当y=0,x2x-4=0,解得x1=-3,x2=4,

A(-3,0),B(4,0),

x=0,y=x2x-4=-4,

C(0,-4);

(2)A=

易得直线BC的解析式为y=x-4,

Q(m,m-4)(0<m<4),

CQ=CA时,m2+(m-4+4)2=52,解得m1=,m2=-(舍去),此时Q点坐标为(-4);

AQ=AC时,(m+3)2+(m-4)2=52,解得m1=1,m2=0(舍去),此时Q点坐标为(1,-3);

QA=QC时,(m+3)2+(m-4)2=52,解得m=(舍去),

综上所述,满足条件的Q点坐标为(-4)或(1,-3);

(3)解:过点FFGPQ于点G,如图,

FGx轴.由B(4,0),C(0,-4)得OBC为等腰直角三角形

∴∠OBC=QFG=45

∴△FQG为等腰直角三角形,

FG=QG=FQ,

PEAC,PGCO,

∴∠FPG=ACO,

∵∠FGP=AOC=90°,

∴△FGP~AOC.

,即

PG=FG=FQ=FQ,

PQ=PG+GQ=FQ+FQ=FQ,

FQ=PQ,

P(m,m2-m-4)(0<m<4),则Q(m,m-4),

PQ=m-4-(m2-m-4)=-m2+m,

FQ=(-m2+m)=-(m-2)2+

-<0,

QF有最大值.

∴当m=2时,QF有最大值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为缓解交通拥堵,遵义市某区拟计划修建一地下通道,该通道一部分的截面如图所示(图中地面AD与通道BC平行),通道水平宽度BC为8米,∠BCD=135°,通道斜面CD 的长为6米,通道斜面AB的坡度i=1:

(1)求通道斜面AB的长为多少米;

(2)为增加市民行走的舒适度,拟将设计图中的通道斜面CD的坡度变缓,修改后的通道斜面DE的坡角为30°,求此时BE的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,O为直线AB上一点,OC平分∠AOEDOE=90°,则以下结论正确的有____________.(只填序号)

①∠AOD与∠BOE互为余角;

OD平分∠COA

③∠BOE=56°40′,则∠COE=61°40′

④∠BOE=2COD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2= 的图象相交于点C(﹣4,﹣2),D(2,4).

(1)求一次函数和反比例函数的表达式;

(2)当x为何值时,y1>0;

(3)当x为何值时,y1<y2,请直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018120日,山西迎来了复兴号列车,与和谐号相比,复兴号列车时速更快,安全性更好.已知太原南﹣北京西全程大约500千米,复兴号”G92次列车平均每小时比某列和谐号列车多行驶40千米,其行驶时间是该列和谐号列车行驶时间的(两列车中途停留时间均除外).经查询,复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐复兴号”G92次列车从太原南到北京西需要多长时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明:

已知:如图,AB∥DE,求证:∠D+∠BCD﹣∠B=180°,

证明:过点CCF∥AB.

∵AB∥CF(已知),

∴∠B=      ).

∵AB∥DE,CF∥AB( 已知 ),

∴CF∥DE (   

∴∠2+   =180° (   

∵∠2=∠BCD﹣∠1,

∴∠D+∠BCD﹣∠B=180° (   ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.

(1)求每套队服和每个足球的价格是多少?

(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;

(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中每个小正方形边长都是1.

(1)画出ABC关于直线1对称的图形A1BlCl;

(2)在直线l上找一点P,使PB=PC;(要求在直线1上标出点P的位置)

(3)连接PA、PC,计算四边形PABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C90°,∠B30°AD是∠BAC的角平分线,DEAB,垂足为点EDE1BE,则ABC的周长是( )

A.6+B.3+2C.6+2D.3+3

查看答案和解析>>

同步练习册答案