精英家教网 > 初中数学 > 题目详情
如图,把矩形ABCD沿EF折叠,使点B落在边AD上的B′处,点A落在A′处.若AE=a、AB=b、BF=c,请写出a、b、c之间的一个等量关系.
分析:连接BE,根据轴对称就可以得出△A′B′E≌△ABE,△B′EF≌△BEF,就可以得出B′E=BE,B′F=BF,∠B′FE=∠BFE,由四边形ABCD为矩形可以得出AD∥BC,就有∠DEF=∠BFE,就可以得出∠B′FE=∠B′EF,就有B′E=B′F,就有B′E=BF,由勾股定理得出结论.
解答:解:c2=a2+b2
理由:连接BE,
∵四边形ABCD是矩形,
∴∠A=∠B=90°.AD∥BC,
∴∠DEF=∠BFE.
∵△A′B′E与△ABE,△B′EF与△BEF关于WF成轴对称,
∴△A′B′E≌△ABE,△B′EF≌△BEF,
∴B′E=BE,B′F=BF,AE=A′E,A′B′=AB,∠B′FE=∠BFE,∠A=∠A′=90°,
∴∠B′EF=∠B′FE,
∴B′E=B′F,
∴B′E=BF.
∵AE=a、AB=b、BF=c,
∴A′E=a,A′B′=b,′B′E=c.
∵∠A′=90°,
∴c2=a2+b2
点评:本题考查了矩形的性质的运用,轴对称的性质的运用,勾股定理的运用,解答时根据轴对称性质得出三角形全等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,把矩形ABCD沿直线EF折叠,使点C与A重合.
(1)只使用直尺和圆规,作出折痕EF,其与AD交于F,BC于E,并作出点D的对应点D′.
(2)连接AE、CF,猜想四边形AECF是什么特殊四边形?并证明你的结论.
(3)当AB=12,AD=18时,求折痕EF长.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,把矩形ABCD沿对角线BD对折,使点C落在点C′处,试证明AE=C′E.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把矩形ABCD沿EF折叠,使点A与点C重叠.AB=8,BC=16,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把矩形ABCD沿EF折叠,若∠1=50°,则∠AEF等于
115°
115°

查看答案和解析>>

同步练习册答案