【题目】已知 a b , a 与b 两个数在数轴上对应的点分别为点 A 、点 B ,求 A 、 B 两点之间的距离.
(探索)
小明利用绝对值的概念,结合数轴,进行探索:
(1)补全小明的探索
(应用)
(2)若点C 对应的数c ,数轴上点C 到A、B 两点的距离相等,求c .(用含a、b 的代数式表示)
(3)若点 D对应的数 d ,数轴上点 D 到 A 的距离是点 D 到 B 的距离的nn 0 倍,请探索 n 的取值范围与点 D 个数的关系,并直接写出a、b 、d、n 的关系.
【答案】(1)详见解析;
(2) c
(3)当 n 1 时,1 个;当 n>0 且 n 1时,2 个
①当 d b时, a d n(b d )
②当b<d a时, a d n(d b)
③当 a<d时, d a n(d b)
【解析】
(1)分a 0 , b<0和a<0 , b<0两种情况讨论;
(2)根据点C 到A、B 两点的距离相等,可知c为a,b的平均值;
(3)分两种情况: n 1时和 n>0 且 n 1时,可得到点 D 个数,结合数轴可得出a、b 、d、n 的关系.
(1)情况二:若 a 0 , b<0 时,A、B 两点之间的距离: AB a |b| a b
情况三:若 a<0 , b<0 时,A、B 两点之间的距离: AB |b a| a b
(2)点C 到A、B 两点的距离相等,可知c为a,b的平均值,
所以 c ;
(3)当 n 1 时,1 个;当 n>0 且 n 1时,2 个
结合数轴,可知
①当 d b时, a d n(b d )
②当b<d a时, a d n(d b)
③当 a<d时, d a n(d b)
科目:初中数学 来源: 题型:
【题目】(本题满分10分)已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.
(1)求证:直线AC是圆O的切线;
(2)如果∠ACB=75°,圆O的半径为2,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.
(1)求y与x的函数关系式,并说明此函数是什么函数;
(2)当x=3时,求y的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为:A →B(+1,+3),从B到A记为:B→A(﹣1,-3),其中第一个数表示左右方向,第二个数表示上下方向.
(1)图中A →C(______,______),B →C(______,______),C→_______(+1,﹣2);
(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;
(3)从A处去P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;
(4)若图中另有两个格点M、N,且M→A(3-a,b-4),M→N(5-a,b-2),则N→A应记为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图1,抛物线y=ax2+bx+3与x轴交于点B、C,与y轴交于点A,且AO=CO,BC=4.
(1)求抛物线解析式;
(2)如图2,点P是抛物线第一象限上一点,连接PB交y轴于点Q,设点P的横坐标为t,线段OQ长为d,求d与t之间的函数关系式;
(3)在(2)的条件下,过点Q作直线l⊥y轴,在l上取一点M(点M在第二象限),连接AM,使AM=PQ,连接CP并延长CP交y轴于点K,过点P作PN⊥l于点N,连接KN、CN、CM.若∠MCN+∠NKQ=45°时,求t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:
学生最喜欢的活动项目的人数统计表
项目 | 学生数(名) | 百分比 |
丢沙包 | 20 | 10% |
打篮球 | 60 | p% |
跳大绳 | n | 40% |
踢毽球 | 40 | 20% |
根据图表中提供的信息,解答下列问题:
(1)m= ,n= ,p= ;
(2)请根据以上信息直接补全条形统计图;
(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E是边AD上的动点(E不与A、D重合),且点E由A向D运动,速度为1cm/s,EG的延长线与BC的延长线交于点F,连接CE、DF,设点E的运动时间为
(1)求证:无论为何值,四边形CEDF都是平行四边形;
(2)①当s时,CE⊥AD;
②当时,平行四边形CEDF的两条邻边相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,BO、CO是角平分线.
(1)∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.
(2)题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.
(3)若∠A=n°,求∠BOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,以AC为底边作等腰△ACD,且使∠ABC=2∠CAD,连接BD.
(1)如图1,若∠ADC=90°,∠BAC=30°,BC=1,求CD的长;
(2)如图1,若∠ADC=90°,证明:AB+BC=BD;
(3)如图2,若∠ADC=60°,探究AB,BC,BD之间的数量关系并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com