精英家教网 > 初中数学 > 题目详情

【题目】已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形

(1)求证:△DFB是等腰三角形;
(2)若DA= AF,求证:CF⊥AB.

【答案】
(1)解:∵AB是⊙O直径,

∴∠ACB=90°,

∵△AEF为等边三角形,

∴∠CAB=∠EFA=60°,

∴∠B=30°,

∵∠EFA=∠B+∠FDB,

∴∠B=∠FDB=30°,

∴△DFB是等腰三角形;


(2)解:过点A作AM⊥DF于点M,设AF=2a,

∵△AEF是等边三角形,∴FM=EN=a,AM= a,

在Rt△DAM中,AD= AF=2 a,AM= a,

∴DM=5a,∴DF=BF=6a,

∴AB=AF+BF=8a,

在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,

∵AE=EF=AF=CE=2a,∴∠ECF=∠EFC,

∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,

∴∠AFC=∠AFE+∠EFC=60°+30°=90°,

∴CF⊥AB.


【解析】(1)由AB是⊙O直径,得到∠ACB=90°,由于△AEF为等边三角形,得到∠CAB=∠EFA=60°,根据三角形的外角的性质即可得到结论;(2)过点A作AM⊥DF于点M,设AF=2a,根据等边三角形的性质得到FM=EN=a,AM= a,在根据已知条件得到AB=AF+BF=8a,根据直角三角形的性质得到AE=EF=AF=CE=2a,推出∠ECF=∠EFC,根据三角形的内角和即可得到结论.本题考查了圆周角定理,等边三角形的性质,等腰三角形的判定和性质,垂径定理,勾股定理,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E、F为对角线BD上的两点,且∠DAE=∠BCF.

(1)求证:AE=CF;

(2)求证:AE∥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小丽购买学习用品的收据如表,因污损导致部分数据无法识别,根据下表,解决下列问题:
(1)小丽买了自动铅笔、记号笔各几支?
(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?

商品名

单价(元)

数量(个)

金额(元)

签字笔

3

2

6

自动铅笔

1.5

记号笔

4

软皮笔记本

2

9

圆规

3.5

1

合计

8

28

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】长春外国语学校为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5.已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若SACE= ,SBDE= ,则AC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图,点MN把线段AB分割成AMMNNB,若以AMMNNB为边的三角形是一个直角三角形,则称点MN是线段AB的勾股分割点.

1)已知MN把线段AB分割成AMMNNB,若AM=1.5MN=2.5BN=2,则点MN是线段AB的勾股分割点吗?请说明理由.

2)已知点MN是线段AB的勾股分割点,且AM为直角边,若AB=24AM=6,求BN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(﹣1)2016 +(cos60°)1+( 0+83×(﹣0.125)3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上):
①把△ABC沿BA方向平移,请在网格中画出当点A移动到点A1时的△A1B1C1
②把△A1B1C1绕点A1按逆时针方向旋转90°后得到△A2B2C2 , 如果网格中小正方形的边长为1,求点B1旋转到B2的路径长.

查看答案和解析>>

同步练习册答案