精英家教网 > 初中数学 > 题目详情
图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)你认为图2中的阴影部分的正方形的边长等于
m-n
m-n

(2)请用两种不同的方法求图2中阴影部分的面积.
(m-n)2
(m-n)2

(m+n)2-4mn
(m+n)2-4mn

(3)观察图2你能写出下列三个代数式之间的等量关系吗?
(m+n)2,(m-n)2,mn
(m-n)2=(m+n)2-4mn
(m-n)2=(m+n)2-4mn

(4)运用你所得到的公式,计算若mn=-2,m-n=4,求(m+n)2的值.
(5)用完全平方公式和非负数的性质求代数式x2+2x+y2-4y+7的最小值.
分析:(1)根据阴影部分正方形的边长等于小长方形的长减去宽解答;
(2)从整体与局部两个思路考虑解答;
(3)根据大正方形的面积减去阴影部分小正方形的面积等于四个长方形的面积解答;
(4)把数据代入(3)的数量关系计算即可得解;
(5)根据完全平方公式配方,再根据非负数的性质即可得解.
解答:解:(1)由图可知,阴影部分小正方形的边长为:m-n;

(2)根据正方形的面积公式,阴影部分的面积为(m-n)2
还可以表示为(m+n)2-4mn;

(3)根据阴影部分的面积相等,(m-n)2=(m+n)2-4mn;

(4)∵mn=-2,m-n=4,
∴(m+n)2=(m-n)2+4mn=42+4×(-2)=16-8=8;

(5)x2+2x+y2-4y+7,
=x2+2x+1+y2-4y+4+2,
=(x+1)2+(y-2)2+2,
∵(x+1)2≥0,(y-2)2≥0,
∴(x+1)2+(y-2)2≥2,
∴当x=-1,y=2时,代数式x2+2x+y2-4y+7的最小值是2.
故答案为:(1)m-n;(2)(m-n)2,(m+n)2-4mn;(3)(m-n)2=(m+n)2-4mn.
点评:本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图①,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.

(1)观察图②,你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn
(2)根据(1)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2=
29

查看答案和解析>>

科目:初中数学 来源: 题型:

28、如图a是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b的形状,拼成一个正方形.
(1)图b中的阴影部分面积为
m2-2mn+n2或(m-n)2

(2)观察图b,请你写出三个代数式(m+n)2,(m-n)2,mn之间的等量关系是
(m+n)2
=
(m-n)2
+4mn

(3)若x+y=-6,xy=2.75,利用(2)提供的等量关系计算:x-y=
±5

(4)实际上有许多代数恒等式可以用图形的面积来表示,如图C,它表示了
2m2+3mn+n2=(2m+n)(m+n),试画出一个几何图形的面积是a2+4ab+3b2,并能利用这个
图形将a2+4ab+3b2进行因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均匀分成四块形状大小完全一样的小长方形,然后按图b形状拼成一个大正方形.
(1)你认为图b中的阴影部分的正方形的边长等于多少?
(2)观察图b你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.
(3)已知m+n=9,mn=14,求(m-n)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m,n的代数式表示)
方法1:
(m-n)2
(m-n)2

方法2:
(m+n)2-4mn
(m+n)2-4mn

(2)根据(1)中结论,请你写出下列三个代数式之间的等量关系;代数式:(m+n)2,(m-n)2,mn
(m-n)2=(m+n)2-4mn
(m-n)2=(m+n)2-4mn

(3)根据(2)题中的等量关系,解决如下问题:已知a+b=8,ab=7,求a-b和a2-b2的值.

查看答案和解析>>

同步练习册答案