精英家教网 > 初中数学 > 题目详情
8.观察下列等式:
第一个等式:${a}_{1}=\frac{2}{1+3×2+2×{2}^{2}}=\frac{1}{2+1}-\frac{1}{{2}^{2}+1}$
第二个等式:${a}_{2}=\frac{{2}^{2}}{1+3×{2}^{2}+2×({2}^{2})^{2}}=\frac{1}{{2}^{2}+1}-\frac{1}{{2}^{3}+1}$
第三个等式:${a}_{3}=\frac{{2}^{3}}{1+3×{2}^{3}+2×({2}^{3})^{2}}=\frac{1}{{2}^{3}+1}-\frac{1}{{2}^{4}+1}$
第四个等式:${a}_{4}=\frac{{2}^{4}}{1+3×{2}^{4}+2×({2}^{4})^{2}}=\frac{1}{{2}^{4}+1}-\frac{1}{{2}^{5}+1}$
按上述规律,回答下列问题:
(1)请写出第六个等式:a6=$\frac{{2}^{6}}{1+3×{2}^{6}+2×({2}^{6})^{2}}$=$\frac{1}{{2}^{6}+1}$-$\frac{1}{{2}^{7}+1}$;
(2)用含n的代数式表示第n个等式:an=$\frac{{2}^{n}}{1+3×{2}^{n}+2×({2}^{n})^{2}}$=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$;
(3)a1+a2+a3+a4+a5+a6=$\frac{14}{43}$(得出最简结果);
(4)计算:a1+a2+…+an

分析 (1)根据已知4个等式可得;
(2)根据已知等式得出答案;
(3)利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得;
(4)根据已知等式规律,列项相消求解可得.

解答 解:(1)由题意知,a6=$\frac{{2}^{6}}{1+3×{2}^{6}+2×({2}^{6})^{2}}$=$\frac{1}{{2}^{6}+1}$-$\frac{1}{{2}^{7}+1}$,
故答案为:$\frac{{2}^{6}}{1+3×{2}^{6}+2×({2}^{6})^{2}}$,$\frac{1}{{2}^{6}+1}$-$\frac{1}{{2}^{7}+1}$;

(2)an=$\frac{{2}^{n}}{1+3×{2}^{n}+2×({2}^{n})^{2}}$=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$,
故答案为:$\frac{{2}^{n}}{1+3×{2}^{n}+2×({2}^{n})^{2}}$,$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$;

(3)原式=$\frac{1}{2+1}$-$\frac{1}{{2}^{2}+1}$+$\frac{1}{{2}^{2}+1}$-$\frac{1}{{2}^{3}+1}$+$\frac{1}{{2}^{3}+1}$-$\frac{1}{{2}^{4}+1}$+$\frac{1}{{2}^{4}+1}$-$\frac{1}{{2}^{5}+1}$+$\frac{1}{{2}^{5}+1}$-$\frac{1}{{2}^{6}+1}$+$\frac{1}{{2}^{6}+1}$-$\frac{1}{{2}^{7}+1}$
=$\frac{1}{2+1}$-$\frac{1}{{2}^{7}+1}$
=$\frac{14}{43}$,
故答案为:$\frac{14}{43}$;

(4)原式=$\frac{1}{2+1}$-$\frac{1}{{2}^{2}+1}$+$\frac{1}{{2}^{2}+1}$-$\frac{1}{{2}^{3}+1}$+…+$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$
=$\frac{1}{2+1}$-$\frac{1}{{2}^{n+1}+1}$
=$\frac{{2}^{n+1}-2}{3({2}^{n+1}+1)}$.

点评 本题主要考查数字的变化,解题的关键是根据已知等式得出等式的变化规律及列项相消法求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.已知直线a∥b,一块直角三角板如图所示放置,若∠1=37°,则∠2的度数是(  )
A.37°B.53°C.63°D.27°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列4个图案中,是轴对称图形的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.抛物线y=-x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.

(1)求直线BC的解析式;
(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;
(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知直线l:y=ax-a+2与x轴交于点A,与y轴交于点B,O点为坐标原点,△ABO外接圆的圆心为点C.设经过C点的反比例函数解析式为y=$\frac{k}{x}$,当点O到直线l距离最大时,k=$\frac{9}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.
(1)当参加旅游的人数不超过10人时,人均收费为240元;
(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知△ABC中,AB=4,AC=3.
(1)用尺规作∠BAC的平分线交BC于点D(保留作图痕迹);
(2)过点D作DE∥AC交AB于点E,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:
①AM=AD+MC;
②AM=DE+BM;
③DE2=AD•CM;
④点N为△ABM的外心.
其中正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在黑色区域的概率.

查看答案和解析>>

同步练习册答案