精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为1个单位,运动时间为t秒.过点P作PE⊥AO交AB于点E.
(1)求直线AB的解析式;
(2)设△PEQ的面积为S,求S与t时间的函数关系,并指出自变量t的取值范围;
(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.

(1)直线AB的解析式为y=﹣2x+4.
(2)当0<t<2时,S=﹣t2+t(0<t<2),
当2<t≤4时,S=t2﹣t(2<t≤4).
(3)t1=,H1),
t2=20﹣8,H2(10﹣4,4).

解析试题分析:(1)根据待定系数法即可得到;
(2)过点Q作QF//x轴交y轴于点F,有两种情况:当0<t<2时,PF=4﹣2t,当2<t≤4时,PF=2t﹣4,然后根据面积公式即可求得;
(3)由菱形的邻边相等即可得到.
试题解析:(1)∵C(2,4),
∴A(0,4),B(2,0),
设直线AB的解析式为y=kx+b,

解得
∴直线AB的解析式为y=﹣2x+4.

(2)如图2,过点Q作QF⊥y轴于F,
∵PE//OB,

∴有AP=BQ=t,PE=t,AF=CQ=4﹣t,
当0<t<2时,PF=4﹣2t,
∴S=PE•PF=×t(4﹣2t)=t﹣t2
即S=﹣t2+t(0<t<2),
当2<t≤4时,PF=2t﹣4,
∴S=PE•PF=×t(2t﹣4)=t2﹣t(2<t≤4).
(3)t1=,H1),
t2=20﹣8,H2(10﹣4,4).
考点:1、待定系数法;2、三角形的面积;3、菱形的性质

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴交于点A(1,0),与y轴交于点B(0,2),求一次函数y=kx+b的解析式及线段AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:

x(元/件)
38
36
34
32
30
28
26
t(件)
4
8
12
16
20
24
28
 
(1)试求t与x之间的函数关系式;
(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价-每件服装的进货价)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):
方案一:提供8000元赞助后,每张票的票价为50元;
方案二:票价按图中的折线OAB所表示的函数关系确定.
(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?
(2)求方案二中y与x的函数关系式;
(3)至少买多少张票时选择方案一比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.
(1)求点C的坐标;
(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.

(1)点F在边BC上.
①如图1,连接DE,AF,若DE⊥AF,求t的值;
②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?
(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求:(1)a的值
(2)k,b的值
(3)这两个函数图象与y轴所围成的三角形的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

经过点(1,1)的直线l:与反比例函数G1:的图象交于点,B(b,-1),与y轴交于点D.
(1)求直线l对应的函数表达式及反比例函数G1的表达式;
(2)反比例函数G2::
①若点E在第一象限内,且在反比例函数G2的图象上,若EA=EB,且△AEB的面积为8,求点E的坐标及t值;
②反比例函数G2的图象与直线l有两个公共点M,N(点M在点N的左侧),若,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,点A(,0),点B(0,2),点C是线段OA的中点.
(1)点P是直线AB上的一个动点,当PC+PO的值最小时,
①画出符合要求的点P(保留作图痕迹);
②求出点P的坐标及PC+PO的最小值;
(2)当经过点O、C的抛物线y=ax2+bx+c与直线AB只有一个公共点时,求a的值并指出这个公共点所在象限.

查看答案和解析>>

同步练习册答案