A. | (0,3) | B. | (0,2) | C. | (0,1) | D. | (0,0) |
分析 作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,然后依据点A与点B′的坐标可得到BE、AE的长,然后证明△B′C′O为等腰直角三角形即可.
解答 解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,
此时△ABC的周长最小,
∵点A、B的坐标分别为(1,4)和(3,0),
∴B′点坐标为:(-3,0),AE=4,
则B′E=4,即B′E=AE.
∴△B′AE为等腰直角三角形.
∴∠AB′E=45°.
∴△B′OC′是等腰直角三角形.
∴B′O=C′O=3,
∴点C′的坐标是(0,3),此时△ABC的周长最小.
故选:A.
点评 此题主要考查了利用轴对称求最短路线以及等腰直角三角形的性质和判定,根据已知得出C点位置是解题关键.
科目:初中数学 来源: 题型:选择题
A. | abc2与3bac2 | B. | 2an2与-a2n | C. | 5与-2x | D. | -$\frac{1}{3}$a2y与$\frac{2}{3}$a2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com