精英家教网 > 初中数学 > 题目详情
16.如图,在△AEC中,点D是EC上的一点,且AE=AD,AB=AC,∠1=∠2.求证:BD=EC.

分析 由已知角相等,利用等式的性质结合图形得到夹角相等,利用SAS得到三角形EAC与三角形DAB全等,利用全等三角形对应边相等即可得证.

解答 证明:∵∠1=∠2,
∴∠1+∠DAC=∠2+∠DAC,即∠DAB=∠EAC,
在△EAC和△DAB中,
$\left\{\begin{array}{l}{AE=AD}\\{∠EAC=∠DAB}\\{AC=AB}\end{array}\right.$,
∴△EAC≌△DAB(SAS),
∴BD=EC.

点评 此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.把正方形ABCD的边BC、CD所在的边沿EF对折使得点C落在边AD的中点C′处,若AB=8,则AG=$\frac{16}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在等腰三角形ABC中,∠C=90°,M为AB中点,在AC上任取一点P(与点A、C不重合),连接PM,过点M作MQ⊥MP于点Q,连接PQ.
(1)画出点P关于点M对称的点N,连接BN,说明BN与AC所在直线的位置关系;
(2)问:以线段AP、PQ、QB为边,能否构成直角三角形?简要说明理由;
(3)设CQ=a、BQ=b,试用含a、b的代数式表示△PMQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在等边△ABC中,AD=BE,BD、CE交于点P,CF⊥BD于F,若PF=3cm,则CP=6cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PD=2,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.若b=$\sqrt{1-a}$+$\sqrt{a-1}$+4,则ab的平方根是±2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.函数y=kx+2k+1,
(1)当-1≤x≤1时,函数f(x)的值有正也有负,求k的取值范围;
(2)当-1≤x≤1时,函数f(x)的值恒为负,求k的取值范围;
(3)当-1≤x≤1时,函数f(x)的值恒为正,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中,A(a,0)、B(b,0)、C(-1,2),且|2a+b+1|+(a+2b-4)2=0.
(1)求A、B两点的坐标;
(2)在y轴上存在点M,使S△COM=$\frac{1}{2}$S△ABC,求点M的坐标.

查看答案和解析>>

同步练习册答案