精英家教网 > 初中数学 > 题目详情
如图,已知正方形ABCD中,对角线AC、BD交于O点,过O点作OE⊥OF分别交DC于E,交BC于F,∠FEC的角平分线EP交直线AC于P
(1)求证:OE=OF;
(2)写出线段EF、PC、BC之间的一个等量关系式,并证明你的结论.
(1)证明:∵正方形ABCD中,对角线AC、BD交于O点,
∴AC⊥BD,
∴∠BOC=∠DOC=90°,
∴∠BOF+∠FOP=90°,
∵OE⊥OF,
∴∠FOE=90°,
∴∠EOC+∠FOP=90°
∴∠BOF=∠EOC,
又∵OB=OC,∠OBF=∠DCE=45°,
∴△BOF≌△COE,
∴OE=OF;

(2)EF+
2
CP=BC,
证明:∵△BOF≌△COE,
∴OE=OF,∠OEF=∠OFE=45°.
∵∠FEC的角平分线EP交直线AC于P,
∴∠FEP=∠CEP.
∴∠OEP=∠OPE.
∴OE=OP.
∴EF=
2
OE=
2
OP,
∵BC=
2
OC=
2
(OP+PC),
∴EF+
2
CP=BC.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知一个等腰梯形的上底长为4cm,下底长为10cm,腰长为5cm,那么这个梯形的高为______cm,面积为______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M.
探究:线段MD、MF的关系,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);
(2)在你经历说明(1)的过程后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.
注意:选取①完成证明得10分;选取②完成证明得7分;选取③完成证明得5分.
①DM的延长线交CE于点N,且AD=NE;②将正方形CGEF6绕点C逆时针旋转45°(如图),其他条件不变;③在②的条件下,且CF=2AD.
附加题:将正方形CGEF绕点C旋转任意角度后(如图),其他条件不变.探究:线段MD、MF的关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知四边形ABCD是正方形,分别过A、C两点作l1l2,作BM⊥l1于M,DN⊥l1于N,直线MB、ND分别交l2于Q、P.求证:四边形PQMN是正方形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将正方形的四个顶点用线段连接起来,怎样的连线最短?研究发现,并非连对角线最短,而是如图的连线更短(即用线段AE、BE、EF、CF、DF把四个顶点连接起来).已知图中ABCD是正方形,∠BAE=∠ABE=∠FDC=∠FCD=30°,∠AEF=∠DFE且AE=DF.
(1)请你证明ADEF;
(2)设正方形边长为2,计算连线AE+BE+EF+CF+DF的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD中,E是AD上一点(E与A、D不重合).连接CE,将△CED绕点D顺时针旋转90°,得到△AFD.
(1)猜想CE和AF之间的关系,并进行证明.
(2)连接EF,若∠ECD=30°,求∠AFE的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=3,则PP′=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F.
(1)求证:DE=DF;
(2)只添加一个条件,使四边形EDFA是正方形.请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,线段AB=CD=10cm.弧BC和弧DA是弧长与半径都相等的圆弧,曲边三角形BCD的面积,是以D为圆心,DC为半径的圆面积的
1
4
,则阴影部分的面积是(  )cm2
A.25πB.50πC.100D.200

查看答案和解析>>

同步练习册答案