精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,M为x轴正半轴上的一点,⊙M与x轴交于A、B两点,与y轴交于C、D两点,若A(-1,0),C点的坐标为

(1)求M点的坐标;
(2)如图,P为上的一个动点,CQ平分∠PCD.当P点运动时,线段AQ的长度是否改变?若不变,请求其值;若改变,请求出其变化范围;

(3)如图,以A为圆心AC为半径作⊙A,P为⊙A上不同于C、D的一个动点,直线PC交⊙M于点Q,K为PQ的中点,当P点运动时,现给出两个结论:①的值不变;②线段OK的长度不变.其中有且只有一个结论正确,选择正确的结论证明并求其值.

【答案】分析:(1)作辅助线,连接MC,在Rt△COM中,运用勾股定理可将⊙M的半径求出,已知点A的坐标,进而可将圆心M的坐标求出;
(2)作辅助线,连接AC,根据圆周角推论,等弧所对的圆周角相等,可得:∠ACD=∠P,又CQ平分∠OCP,可得:∠PCQ=∠OCQ,故:∠ACD+∠OCQ=∠PCQ+∠P,即∠ACQ=∠AQC,所以AQ=AC=2为定值;
(3)线段OK的长度不变,作辅助线,连接PD、QD、KD,可得:⊙A、⊙M为等圆,=,∠DPQ=∠DQP,△DPQ为等腰三角形,又K为PQ的中点,可得:DK⊥PQ,故在Rt△DKC中,OK为斜边的中线.
解答:解:(1)连接MC,设⊙M的半径为R
∵A(-1,0),C(0,),OC2+OM2=MC2

解得R=2.
∴M点的坐标为(1,0).

(2)AQ不变,AQ=AC=2.
连接AC,∵∠ACD=∠P
又∵CQ平分∠OCP
∴∠PCQ=∠OCQ
∴∠ACD+∠OCQ=∠PCQ+∠P
即:∠ACQ=∠AQC
∴AQ=AC=2.

(3)OK不变,OK=
连接PD、QD、KD,
∵AC==2
∴⊙A的半径为2
∵⊙A的半径为2,⊙M的半径为2
∴⊙A、⊙M为等圆

∴∠DPQ=∠DQP
∴DQ=DP
∵K为PQ的中点
∴DK⊥PQ
∵OC=OD
=OC=
点评:本题考查垂径定理的应用.解此类问题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案