精英家教网 > 初中数学 > 题目详情
(2013•西城区一模)如图,点C在线段AB上,△DAC和△DBE都是等边三角形.
(1)求证:△DAB≌△DCE;
(2)求证:DA∥EC.
分析:(1)由△DAC和△DBE都是等边三角形,利用等边三角形的性质得到两对边相等,两个角为60度,利用等式的性质得到夹角相等,利用SAS即可得证;
(2)由全等三角形的对应角相等得到∠A=∠DCE=60°,再由∠ADC=60°,得到一对内错角相等,利用内错角相等两直线平行即可得证.
解答:证明:(1)∵△DAC和△DBE都是等边三角形,
∴DA=DC,DB=DE,∠ADC=∠BDE=60°,
∴∠ADC+∠CDB=∠BDE+∠CDB,即∠ADB=∠CDE,
在△DAB和△DCE中,
DA=DC
∠ADB=∠CDE
DB=DE

∴△DAB≌△DCE(SAS);

(2)∵△DAB≌△DCE,
∴∠A=∠DCE=60°,
∵∠ADC=60°,
∴∠DCE=∠ADC,
∴DA∥EC.
点评:此题考查了全等三角形的判定与性质,以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•西城区一模)上海原世博园区最大单体建筑“世博轴”被改造成一个综合性商业中心,该项目营业面积约130 000平方米,130 000用科学记数法表示应为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•西城区一模)如图,AF是∠BAC的平分线,EF∥AC交AB于点E.若∠1=25°,则∠BAF的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•西城区一模)如图,在矩形ABCD中,AB=2,BC=4.将矩形ABCD绕点C沿顺时针方向旋转90°后,得到矩形FGCE(点A、B、D的对应点分别为点F、G、E).动点P从点B开始沿BC-CE运动到点E后停止,动点Q从点E开始沿EF-FG运动到点G后停止,这两点的运动速度均为每秒1个单位.若点P和点Q同时开始运动,运动时间为x(秒),△APQ的面积为y,则能够正确反映y与x之间的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•西城区一模)在Rt△ABC中,∠ACB=90°,∠ABC=α,点P在△ABC的内部.
(1)如图1,AB=2AC,PB=3,点M、N分别在AB、BC边上,则cosα=
3
2
3
2
,△PMN周长的最小值为
3
3

(2)如图2,若条件AB=2AC不变,而PA=
2
,PB=
10
,PC=1,求△ABC的面积;
(3)若PA=m,PB=n,PC=k,且k=mcosα=nsinα,直接写出∠APB的度数.

查看答案和解析>>

同步练习册答案