15£®¼ÆË㣺
£¨1£©-3.5¡Á£¨-$\frac{1}{6}$-0.5£©¡Á$\frac{3}{7}$¡Â£¨-$\frac{1}{2}$£©£»
£¨2£©23¡Á£¨-5£©-£¨-3£©¡Â£¨$\frac{3}{128}$£©£»
£¨3£©|-$\frac{3}{4}$|¡Â£¨-3$\frac{3}{4}$£©-$\frac{9}{14}$¡Á£¨-3$\frac{1}{2}$£©£»
£¨4£©2$\frac{3}{7}$¡Á£¨2$\frac{5}{8}$-4$\frac{5}{8}$£©¡Á$\frac{7}{17}$¡Â1$\frac{1}{17}$£»
£¨5£©$\frac{7}{12}$¡Â£¨-$\frac{1}{5}$£©+£¨-20£©¡Â$\frac{12}{7}$-$\frac{7}{12}$¡Â£¨-$\frac{1}{13}$£©£»
£¨6£©-$\frac{1}{60}$¡Â£¨-$\frac{1}{6}$-$\frac{3}{20}$+$\frac{4}{5}$-$\frac{11}{12}$£©

·ÖÎö £¨1£©ÏȼÆËãСÀ¨ºÅÄÚµÄʽ×Ó£¬È»ºó¸ù¾ÝÓÐÀíÊýµÄ³Ë³ý·¨½øÐмÆËã¼´¿É½â´ð±¾Ì⣻
£¨2£©¸ù¾ÝÓÐÀíÊýµÄ³Ë³ý·¨ºÍ¼õ·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨3£©¸ù¾ÝÓÐÀíÊýµÄ³Ë³ý·¨ºÍ¼õ·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨4£©ÏȼÆËãСÀ¨ºÅÄÚµÄʽ×Ó£¬È»ºó¸ù¾ÝÓÐÀíÊýµÄ³Ë³ý·¨½øÐмÆËã¼´¿É½â´ð±¾Ì⣻
£¨5£©¸ù¾ÝÓÐÀíÊýµÄ³Ë³ý·¨ºÍ¼Ó¼õ·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨6£©ÏȼÆËãСÀ¨ºÅÄÚµÄʽ×Ó£¬È»ºó¸ù¾ÝÓÐÀíÊýµÄ³ý·¨¿ÉÒÔ½â´ð±¾Ì⣮

½â´ð ½â£º£¨1£©-3.5¡Á£¨-$\frac{1}{6}$-0.5£©¡Á$\frac{3}{7}$¡Â£¨-$\frac{1}{2}$£©
=-3.5¡Á£¨-$\frac{2}{3}$£©¡Á$\frac{3}{7}¡Á£¨-2£©$
=-2£»
£¨2£©23¡Á£¨-5£©-£¨-3£©¡Â£¨$\frac{3}{128}$£©
=£¨-115£©+3¡Á$\frac{128}{3}$
=£¨-115£©+128
=13£»
£¨3£©|-$\frac{3}{4}$|¡Â£¨-3$\frac{3}{4}$£©-$\frac{9}{14}$¡Á£¨-3$\frac{1}{2}$£©
=$\frac{3}{4}¡Á£¨-\frac{4}{15}£©+\frac{9}{14}¡Á\frac{7}{2}$
=$-\frac{1}{5}+\frac{9}{4}$
=$-\frac{41}{20}$£»
£¨4£©2$\frac{3}{7}$¡Á£¨2$\frac{5}{8}$-4$\frac{5}{8}$£©¡Á$\frac{7}{17}$¡Â1$\frac{1}{17}$
=$\frac{17}{7}¡Á£¨-2£©¡Á\frac{7}{17}¡Á\frac{17}{18}$
=-$\frac{17}{9}$£»
£¨5£©$\frac{7}{12}$¡Â£¨-$\frac{1}{5}$£©+£¨-20£©¡Â$\frac{12}{7}$-$\frac{7}{12}$¡Â£¨-$\frac{1}{13}$£©
=$\frac{7}{12}¡Á£¨-5£©+£¨-20£©¡Á\frac{7}{12}+\frac{7}{12}¡Á13$
=$\frac{7}{12}$¡Á[£¨-5£©+£¨-20£©+13]
=$\frac{7}{12}¡Á£¨-12£©$
=-7£»
£¨6£©-$\frac{1}{60}$¡Â£¨-$\frac{1}{6}$-$\frac{3}{20}$+$\frac{4}{5}$-$\frac{11}{12}$£©
=$-\frac{1}{60}¡Â\frac{-10-9+48-55}{60}$
=$-\frac{1}{60}¡Â\frac{-26}{60}$
=$\frac{1}{60}¡Á\frac{60}{26}$
=$\frac{1}{26}$£®

µãÆÀ ±¾Ì⿼²éÓÐÀíÊýµÄ»ìºÏÔËË㣬½âÌâµÄ¹Ø¼üÊÇÃ÷È·ÓÐÀíÊý»ìºÏÔËËãµÄ¼ÆËã·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®3µÄƽ·½¸ùÊÇ£¨¡¡¡¡£©
A£®9B£®¡À9C£®$\sqrt{3}$D£®$¡À\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®£¨1£©¼ÆË㣺
¢Ù3a2b•£¨-2ab-2£©2¡Â4a-2b-3
¢Ú2£¨x-y£©2-£¨2x+y£©£¨2x-y£©
£¨2£©·Ö½âÒòʽ£º
¢Ùmn2+6mn+9m
¢Úx2£¨a-b£©+£¨b-a£©
£¨3£©½â·½³Ì£º1-$\frac{1}{2x-2}$=$\frac{2x}{1-x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®£¨1£©»¯¼ò£º£¨5a2+2a-1£©-4£¨3-8a+2a2£©
£¨2£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º3a2b-[2ab2-2£¨ab-$\frac{3}{2}$a2b£©+ab]+3ab2£¬ÆäÖÐa=3£¬b=-$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Ð¡ç÷¼ÒÓÐÒ»·ù³¤150cm£¬¿í100cmµÄ³¤·½ÐÎÓÍ»­£¬ÎªÁËʹÓÍ»­ÃÀ¹Û£¬Ð¡ç÷µÄ°Ö°ÖÇëÀ´¹¤ÈËÔÚÓÍ»­µÄËÄÖÜÏâÉÏ¿í¶ÈÏàͬµÄ½ðÉ«±ß¿ò£¬ÖƳÉÒ»·ù¹Ò»­£¬ÏâÍêºóµÄ¹Ò»­Ãæ»ýÊÇÔ­ÓÍ»­Ãæ»ýµÄ2±¶£¬ÓÍ»­µÄ½ðÉ«±ß¿ò¿í¶ÈÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª$\left\{\begin{array}{l}{x+2y-z=8}\\{2x-y+z=18}\end{array}\right.$£¬Çó8x+y+zµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÈôʵÊýxÂú×ãµÈʽ£¨2x-1£©3=27£¬Ôòx=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬¡÷ABCÓë¡÷ADE¶¼ÊǵÈÑüÈý½ÇÐΣ¬AD=AE£¬AB=AC£¬¡ÏDAB=¡ÏCAE£¬ÇóÖ¤£º¡÷ABC¡×¡÷ADE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2016-2017ѧÄê¹ã¶«Ê¡·ðɽÊÐ˳µÂÇøÆßÄ꼶3ÔÂÔ¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÏÂÁÐʽ×Ó²»ÄÜÓÃƽ·½²î¹«Ê½¼ÆËãµÄÊÇ£º£¨ £©

A. B.

C. D.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸