分析 (1)根据正方形的性质和全等三角形的性质即可得到结论;
(2)根据四边形ABCD是菱形和∠ABC=120°,推出AC⊥BD,∠ABO=60°,所以∠FAO+∠AFO=90°,根据AG⊥BE,得到∠EAG+∠BEA=90°,∠AFO=∠BEA,又因为∠AOF=∠BOE=90°,推出三角形相似,即可得到结论.
解答 解:(1)∵四边形ABCD是正方形,
∴∠AOB=∠BOC=90°,AO=BO,
∵AG⊥BE,∠AFO=∠BFG,
∴∠FAO=∠FBG,
在△AFO与△BFO中,
$\left\{\begin{array}{l}{∠AOF=∠BOE}\\{∠FAO=∠FBG}\\{AO=BO}\end{array}\right.$,
∴△AFO≌△BFO,
∴AF=BE;
(2)结论:AF=$\sqrt{3}$BE.
理由:∵四边形ABCD是菱形,∠ABC=120°,
∴AC⊥BD,∠ABO=60°,
∴∠FAO+∠AFO=90°,
∵AG⊥BE,
∴∠EAG+∠BEA=90°,
∴∠AFO=∠BEA,
又∵∠AOF=∠BOE=90°,
∴△AOF∽△BOE,
∴$\frac{AF}{BE}$=$\frac{AO}{OB}$,
∵∠ABO=60°,AC⊥BD,
∴$\frac{AO}{OB}$=tan60°=$\sqrt{3}$,
∴$\frac{AF}{BE}$=$\sqrt{3}$,
∴AF=$\sqrt{3}$BE.
点评 本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,相似三角形的判定和性质,熟记定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2x+3(x+5)=20 | B. | 2x+3(x+0.5)=20 | C. | 2x+3(x-0.5)=20 | D. | 2x+3 (x-5)=20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com