精英家教网 > 初中数学 > 题目详情
3.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=15度.

分析 先根据三角形内角和定理,计算出∠ACB=180°-∠A-∠B=90°,再根据三角形的高和角平分线的定义,得到∠BCE=$\frac{1}{2}$∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE-∠BCD进行计算即可.

解答 解:∵∠A=30°,∠B=60°,
∴∠ACB=180°-∠A-∠B=90°,
∵CD、CE分别是△ABC的高和角平分线,
∴∠BCE=$\frac{1}{2}$∠ACB=45°,∠BDC=90°,
∴∠BCD=90°-∠B=30°,
∴∠DCE=∠BCE-∠BCD=45°-30°=15°.
故答案为:15°.

点评 本题主要考查了三角形内角和定理以及三角形的角平分线、高线的定义,解决问题的关键是掌握:三角形内角和是180°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.如图,△ABC中、BC=a,若D1、E1分别是AB、AC的中点,则D1E1=$\frac{1}{2}$a;若D2、E2分别是D1B、E1C的中点,则D2E2=$\frac{1}{2}(\frac{a}{2}+a)=\frac{3}{4}$a;若D3、E3分别是D2B、E2C的中点,则D3E3=$\frac{1}{2}(\frac{3}{4}a+a)=\frac{7}{8}$a;…若D8、E8分别是D7B、E7C的中点,则D8E8=$\frac{255}{256}$a.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,若∠A=27°,∠B=50°,∠C=38°,则∠BFE等于(  )
A.65°B.115°C.105°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,如果有点P(-2,1)与点Q(2,-1),那么:点P与点Q关于原点对称.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如果m与n的平均数是4,那么m+1与n+5的平均数是7.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.-$\frac{3}{4}$是下列各算式中(  )的积.
A.-3$\frac{1}{2}$×(-$\frac{3}{14}$)B.$\frac{3}{4}$×(-$\frac{5}{6}$)C.(-1$\frac{1}{2}$)×$\frac{4}{9}$D.$\frac{4}{5}$×(-$\frac{15}{16}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.△ABC是⊙O的内接三角形,AB=AC,点P是$\widehat{AB}$上一点,连接PA、PB、PC.
(1)如图1,若∠ABC=60°,求证:PA+PB=PC;
(2)如图2,点Q在$\widehat{AC}$上,且满足$\widehat{PQ}$=$\widehat{CQ}$,直线PA交BQ延长线于点H,求证:∠H=$\frac{1}{2}$∠BCP;
(3)如图3,在(2)的条件下,设BQ交PC于点M,若P为$\widehat{AB}$的中点,sin∠BPC=$\frac{24}{25}$,CM=24$\sqrt{10}$,求PM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知,如图①,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,点P为线段BC上的一动点(不运动到C,B两点)过点P作PQ⊥BC交AB于点Q,在AC边上取一点D,使QD=QP,连结DP,设CP=x
(1)求QP的长,用含x的代数式表示.
(2)当x为何值时,△DPQ为直角三角形?
(3)记点D关于直线PQ的对称点为点D′.
①当点D′落在AB边上时,求x的值;
②在①的条件下,如图②,将此时的△DPQ绕点P顺时针旋转一个角度α(0°<α<∠DPB),在旋转过程中,设DP所在的直线与直线AB交于点M,与直线AC交于点N,是否存在这样的M,N两点,使△AMN为等腰三角形?若存在,求出此时AN的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.细心观察图形,认真分析各式,然后解答问题.
OA22=($\sqrt{1}$)2+1=2,s1=$\frac{\sqrt{1}}{2}$;OA32=12+($\sqrt{2}$)2=3,S2=$\frac{\sqrt{2}}{2}$;…
OA42=12+($\sqrt{3}$)2=4,S3=$\frac{\sqrt{3}}{2}$;…
(1)请用含有n(n为正整数)的等式表示上述变化规律:OAn2=n,Sn=$\frac{\sqrt{n}}{2}$.
(2)若一个三角形的面积是2$\sqrt{2}$,计算说明它是第几个三角形?
(3)求出S12+S22+S32+…+S92的值.

查看答案和解析>>

同步练习册答案