分析 根据题中的等式关系可推出两组对边分别相等,从而可判断四边形AEFD为平行四边形.由勾股定理的逆定理判定∠BAC=90°,则∠DAE=150°,故易求∠FDA=30°.所以由平行四边形的面积公式即可解答.
解答 解:∵在△ABC中,AB=3,AC=4,BC=5,
∴BC2=AB2+AC2,
∴∠BAC=90°,
∵△ABD,△ACE都是等边三角形,
∴∠DAB=∠EAC=60°,
∴∠DAE=150°.
∵△ABD和△FBC都是等边三角形,
∴∠DBF+∠FBA=∠ABC+∠ABF=60°,
∴∠DBF=∠ABC.
在△ABC与△DBF中,
$\left\{\begin{array}{l}{BD=BA}\\{∠DBF=∠ABC}\\{BF=BC}\end{array}\right.$
∴△ABC≌△DBF(SAS),
∴AC=DF=AE=4,
同理可证△ABC≌△EFC,
∴AB=EF=AD=3,
∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).
∴∠FDA=180°-∠DAE=30°,
过F作FM⊥AD于M,
∵DF=4,∠FDA=30°,
∴FM=$\frac{1}{2}$DF=2,
∴S?AEFD=AD•FM=3×2=6.
即四边形AEFD的面积是6.
故答案为:6.
点评 本题综合考查了勾股定理的逆定理,平行四边形的判定与性质,全等三角形的判定与性质以及等边三角形的性质.综合性比较强,难度较大,有利于培养学生综合运用知识进行推理和计算的能力.
科目:初中数学 来源: 题型:选择题
A. | 逐渐增大 | B. | 逐渐减小 | C. | 不变 | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (3,4) | B. | (3,-4) | C. | (-4,3) | D. | (4,-3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com