精英家教网 > 初中数学 > 题目详情
(2002•无锡)已知:如图,⊙O的半径为r,CE切⊙O于C,且与弦AB的延长线交于点E,CD⊥AB于D.如果CE=2BE,且AC、BC的长是关于x的方程x2-3(r-2)x+r2-4=0的两个实数根.
求:(1)AC、BC的长;(2)CD的长.

【答案】分析:(1)△ECB与△EAC相似,得出AC,BC的关系,结合二次方程得出AC,BC,r的长.
(2)连接CO并延长交⊙O于F,证明△ACF∽△DCB,根据相似三角形的性质求出CD的长.
解答:解:(1)∵CE切⊙O于C
∴∠ECB=∠A,∠E=∠E
∴△ECB∽△EAC
∴BC:AC=BE:CE=1:2
∴AC=2BC


解得BC=4,r=6,AC=8.

(2)连接CO并延长交⊙O与F,连接AF
∵∠CAF 90°,∠CFA=∠CBD
∵∠CDB=90°=∠CAF
∴△CAF∽△CDB
∴AC:CD=CF:BC
∴CD===
点评:综合考查了相似三角形的判定和性质,以及二次方程根与系数的关系,会解方程组.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2002•无锡)已知直线y=kx-4(k>0)与x轴和y轴分别交于A、C两点;开口向上的抛物线y=ax2+bx+c过A、C两点,且与x轴交于另一点B.
(1)如果A、B两点到原点O的距离AO、BO满足AO=3BO,点B到直线AC的距离等于,求这条直线和抛物线的解析式.
(2)问是否存在这样的抛物线,使得tan∠ACB=2,且△ABC的外接圆截y轴所得的弦长等于5?若存在,求出这样的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年江苏省无锡市中考数学试卷(解析版) 题型:解答题

(2002•无锡)已知直线y=kx-4(k>0)与x轴和y轴分别交于A、C两点;开口向上的抛物线y=ax2+bx+c过A、C两点,且与x轴交于另一点B.
(1)如果A、B两点到原点O的距离AO、BO满足AO=3BO,点B到直线AC的距离等于,求这条直线和抛物线的解析式.
(2)问是否存在这样的抛物线,使得tan∠ACB=2,且△ABC的外接圆截y轴所得的弦长等于5?若存在,求出这样的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2002•无锡)已知:如图,⊙O的半径为r,CE切⊙O于C,且与弦AB的延长线交于点E,CD⊥AB于D.如果CE=2BE,且AC、BC的长是关于x的方程x2-3(r-2)x+r2-4=0的两个实数根.
求:(1)AC、BC的长;(2)CD的长.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(10)(解析版) 题型:填空题

(2002•无锡)已知圆柱的母线长是5cm,底面半径是2cm,则这个圆柱的侧面积是    cm2

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(03)(解析版) 题型:选择题

(2002•无锡)已知⊙O1与⊙O2的圆心距是9cm,它们的半径分别为3cm和6cm,则这两圆的位置关系是( )
A.外切
B.内切
C.相交
D.外离

查看答案和解析>>

同步练习册答案