精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,O为坐标原点,二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为P.
(1)求这个二次函数的解析式;
(2)顶点P的坐标为______;此抛物线与x轴的另一个交点B的坐标为______;
(3)若抛物线与y轴交于C点,求△ABC的面积;
(4)在x轴上方的抛物线上是否存在一点D,使△ABD的面积等于△ABC的面积?若存在,请直接写出点D的坐标.
(1)将A(-1,0)代入y=-x2+bx+3中,得:b=2,
所以二次函数解析式为y=-x2+2x+3;

(2)将y=-x2+2x+3变形得y=-(x-1)2+4,则顶点P的坐标为
(1,4),
令y=0,则求得B点坐标(3,0);

(3)当x=0时,y=3,所以C点坐标(0,3),
所以△ABC的面积=
1
2
×|3-(-1)|×3=6;

(4)D(2,3).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QDAC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

设抛物线y=ax2+bx+c与X轴交于两不同的点A(-1,0),B(m,0),(点A在点B的左边),与y轴的交点为点C(0,-2),且∠ACB=90°.
(1)求m的值和该抛物线的解析式;
(2)若点D为该抛物线上的一点,且横坐标为1,点E为过A点的直线y=x+1与该抛物线的另一交点.在X轴上是否存在点P,使得以P、B、D为顶点的三角形与△AEB相似?若存在,求出点P的坐标;若不存在,请说明理由.
(3)连接AC、BC,矩形FGHQ的一边FG在线段AB上,顶点H、Q分别在线段AC、BC上,若设F点坐标为(t,0),矩形FGHQ的面积为S,当S取最大值时,连接FH并延长至点M,使HM=k•FH,若点M不在该抛物线上,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,将直线y=kx沿y轴向下平移3个单位长度后恰好经过B(-3,0)及y轴上的C点.若抛物线y=-x2+bx+c与x轴交于A、B两点(点A在点B的右侧),且经过点C,其对称轴与直线BC交于点E,与x轴交于点F.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,若∠APD=∠ACB,求点P的坐标;
(3)在抛物线上是否存在点M,使得直线CM把四边形EFOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=
1
2
x2+mx+n(n≠0)与直线y=x交于A、B两点,与y轴交于点C,OA=OB,BCx轴.
(1)求抛物线的解析式;
(2)设D、E是线段AB上异于A、B的两个动点(点E在点D的上方),DE=
2
,过D、E两点分别作y轴的平行线,交抛物线于F、G,若设D点的横坐标为x,四边形DEGF的面积为y,求x与y之间的关系式,写出自变量x的取值范围,并回答x为何值时,y有最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.
(1)求△OAB的面积;
(2)若抛物线y=-x2-2x+c经过点A.
①求c的值;
②将该抛物线向下平移m个单位,使顶点落在线段AO上,请直接写出相应的m值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在梯形ABCD中,已知ABCD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为x轴,过D且垂直于AB的直线为y轴建立平面直角坐标系.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L;
(3)若P是抛物线的对称轴L上的点,那么使△PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC=1,∠A=45°,边长为1的正方形的一个顶点D在边AC上,与△ABC另两边分别交于点E、F,DEAB,将正方形平移,使点D保持在AC上(D不与A重合),设AF=x,正方形与△ABC重叠部分的面积为y.
(1)求y与x的函数关系式并写出自变量x的取值范围;
(2)x为何值时y的值最大?
(3)x在哪个范围取值时y的值随x的增大而减小?

查看答案和解析>>

同步练习册答案