精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,A(0,6),C(8,0),OA、AC的中点为M、N,动点P从O出发以每秒1个单位的速度按照箭头方向通过C、N到M,设P点从O开始运动的路程为x,△AOP的面积为y.
(1)求直线AC的解析式;
(2)点P从O出发到M止,求y与x的函数关系式;
(3)若⊙P的半径为3,⊙N的半径为1;在点P运动过程中,t为何值时⊙P与⊙N相切,(直接写出t值).
(1)设直线AC的解析式为:y=kx+b,由题意得:
6=b
0=8k+b
解得:
k=-
3
4
b=6

∴直线AC的解析式为:y=-
3
4
x+6


(2)①当0<x≤8时,
y=
1
2
OP•AO
∵OP=t,AO=6
y=3x;
②当8<x≤13时,由勾股定理可以求出:AC=10
∵N是AC的中点
∴NC=
1
2
AC=5
∵M是AO中点,
∴MN是△AOC得中位线
∴MN=
1
2
OC=4
作PE⊥OA于E
∴△AEP△AOC
PE
OC
=
AP
AC

PE
8
=
10-(x-8)
10
解得:
PE=
72-4x
5

∴y=
1
2
×6×
72-4x
5

y=-
12
5
x+43
1
5


③当13<x<17时,
PN=x-13
∴MP=4-(x-13)=17-x
∴y=
1
2
×6×(17-x)

∴y=-3x+51

(3)利用三角形相似和勾股定理可以求出:
t=9或11或15或17或4+
7
或4-
7

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,直线l对应的函数解析式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图表示甲、乙两名赛车选手在一次自行车越野赛中,路程y(km)随时间x(min)变化的图象(全程),根据图象回答下列问题:
(1)甲、乙两名赛车选手中,______先到达终点,写出乙运动员的路程y与时间x的函数关系式______,这次比赛的全程是______km;
(2)写出甲的速度慢于乙的速度时,时间x的取值范围:______;
(3)比赛开始______min时,两人第二次相遇.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费)
(1)根据图象分别求出l1,l2的函数关系式;
(2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知△ABC,∠BAC=90°,AB=AC=4,分别以AC,AB所在直线为x轴,y轴建立直角坐标系(如图).点M(m,n)是直线BC上的一个动点,设△MAC的面积为S.
(1)求直线BC的解析式;
(2)求S关于m的函数解析式;
(3)是否存在点M,使△AMC为等腰三角形?若存在,求点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,沿CP折叠正方形,折叠后点B落在平面内点B′处,已知CB′的解析式为y=-
3
x+b,则B′点的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线y=kx+b经过点A(0,1),B(-3,0),点P是这条直线上的一个动点,以P为圆心的圆与x轴相切于点C.
(1)求直线AB的解析式;
(2)设点P的横坐标为t,若⊙P与y轴相切,求t的值;
(3)是否存在点P,使⊙P与y轴两交点间的距离恰好等于2?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知y=
k
x
图象在二、四象限,则直线y=kx-1一定不过第______象限.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中有两条直线:y=
3
5
x+
9
5
和y=-
3
2
+6,它们的交点为P,且它们与x轴的交点分别为A,B.
(1)求A,B,P的坐标;(2)求△PAB的面积.

查看答案和解析>>

同步练习册答案