精英家教网 > 初中数学 > 题目详情
如图,△ABC一内角和外角角平分线相交于点P,已知∠A的度数为α,则∠BPC的度数是
1
2
α
1
2
α
分析:根据BP为∠ABC的角平分线,CP为△ABC外角∠ACD的平分线,可知,∠A=180°-∠1-∠3,∠P=180°-∠4=∠5=180°-∠3-
1
2
(∠A+2∠1),两式联立可得2∠P=∠A.
解答:解:∵BP为∠ABC的内角平分线,CP为△ABC外角∠ACD的平分线,两角平分线交于点P,
∴∠1=∠2,∠5=
1
2
(∠A+2∠1),∠3=∠4,
在△ABE中,∠A=180°-∠1-∠3
∴∠1+∠3=180°-∠A----①
在△CPE中,∠P=180°-∠4-∠5=180°-∠3-
1
2
(∠A+2∠1),
即2∠P=360°-2∠3-∠A-2∠1=360°-2(∠1+∠3)-∠A----②,
把①代入②得2∠P=∠A,即∠BPC=
1
2
α.
故答案为:
1
2
α.
点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、(1)如图,△ABC纸片中,∠A=36°,AB=AC,请你剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形.请画出示意图,并标明必要的角度;
(2)已知等腰△ABC中,AB=AC,D为BC边上一点,连接AD,若△ACD与△ABD都是等腰三角形,则∠B的度数是
45°或36°
;(请画出示意图,并标明必要的角度)
(3)现将(1)中的等腰三角形改为△ABC中,∠A=36°,从点B出发引一直线可分成两个等腰三角形,则原三角形的最大内角的所有可能值是
72°、108°、90°、126°
.(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC中AD是BC边上的高,CE是△ABC的一条角平分线,它们相交于点P.已知∠APE=55°,∠AEP=75°,求△ABC的各个内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下面材料,并回答所提出的问题.
三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.
已知:如图,△ABC中,AD是角平分线.
求证:
BD
DC
=
AB
AC

分析:要证
BD
DC
=
AB
AC
,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在三角形相似.现在B、D、C在一直线上,△ABD与△ADC不相似,需要考虑用别的方法换比.在比例式
BD
DC
=
AB
AC
中,AC恰是BD、DC、AB的第四比例项,所以考虑过C作C精英家教网E∥AD,交BA的延长线于E,从而得到BD、DC、AB的第四比例项AE,这样,证明
BD
DC
=
AB
AC
就可以转化成证AE=AC.
证明:过C作CE∥DA,交BA的延长线于E.
CE∥DA?
∠1=∠E
∠2=∠3
∠1=∠2
?∠E=∠3?AE=AC

CE∥DA?
BD
DC
=
BA
AE
AE=AC
?
BD
DC
=
AB
AC

(1)上述证明过程中,用到了哪些定理?(写对两个定理即可)
(2)在上述分析、证明过程中,主要用到了下列三种数学思想的哪一种?选出一个填在后面的括号内.精英家教网[]
①数形结合思想;
②转化思想;
③分类讨论思想.
(3)用三角形内角平分线性质定理解答问题:
已知:如图,△ABC中,AD是角平分线,AB=5cm,AC=4cm,BC=7cm.求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

学习了勾股定理的逆定理,我们知道:在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形.类似地,我们定义:对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形.
(1)根据“勾股三角形”的定义,请你直接判断命题:“直角三角形是勾股三角形”是真命题还是假命题?
(2)已知某一勾股三角形的三个内角的度数从小到大依次为x°、y°和z°,且xy=2160,求x+y的值;
(3)如图,△ABC内接于⊙O,AB=
6
,AC=1+
3
,BC=2,⊙O的直径BE交AC于点D.
①求证:△ABC是勾股三角形;
②求DE的长.

查看答案和解析>>

同步练习册答案