精英家教网 > 初中数学 > 题目详情
(2006•柳州)如图,在平行四边形ABCD中,
∵∠1=∠2
∴BC=DC
∴平行四边形ABCD是菱形    .(请在括号内填上理由)
【答案】分析:根据菱形的判定定理即可解答.
解答:解:有一组邻边相等的平行四边形是菱形.
点评:此题比较简单,考查的是菱形的判定定理,即有一组邻边相等的平行四边形是菱形.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2006•柳州)如图,已知二次函数y=ax2+bx+c的象经过A(-1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.
(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年九年级中考复习阶段性测试数学试卷(解析版) 题型:解答题

(2006•柳州)如图,已知二次函数y=ax2+bx+c的象经过A(-1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.
(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年广东省深圳市高中阶段学校招生考试数学模拟试卷(解析版) 题型:解答题

(2006•柳州)如图,已知二次函数y=ax2+bx+c的象经过A(-1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.
(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年广西柳州市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•柳州)如图,已知二次函数y=ax2+bx+c的象经过A(-1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.
(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年广西柳州市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•柳州)如图,抛物线y=-x2+2mx+m+2的图象与x轴交于A(-1,0),B两点,在x轴上方且平行于x轴的直线EF与抛物线交于E,F两点,E在F的左侧,过E,F分别作x轴的垂线,垂足是M,N.
(1)求m的值及抛物线的顶点坐标;
(2)设BN=t,矩形EMNF的周长为C,求C与t的函数表达式;
(3)当矩形EMNF的周长为10时,将△ENM沿EN翻折,点M落在坐标平面内的点记为M',试判断点M'是否在抛物线上?并说明理由.

查看答案和解析>>

同步练习册答案