精英家教网 > 初中数学 > 题目详情
(2005•太原)如图,直线y=x+2与y轴交于点A,与x轴交于点B,⊙C是△ABO的外接圆(O为坐标原点),∠BAO的平分线交⊙C于点D,连接BD、OD.
(1)求证:BD=AO;
(2)在坐标轴上求点E,使得△ODE与△OAB相似;
(3)设点A′在OAB上由O向B移动,但不与点O、B重合,记△OA′B的内心为I,点I随点A′的移动所经过的路程为l,求l的取值范围.

【答案】分析:(1)利用直线y=x+2与y轴交于点A,与x轴交于点B,求出A(0,2),B(-2,0),利用勾股定理求出三角形ABO的边,由边的长度,可求出∠ABO=30°,∠BAO=60°,利用∠BAO的平分线交⊙C于点D,可求出∠ABO=30°=∠BAD,所以BD=AO;
(2)分两种情况:①当∠ODE=90°时,点E的坐标为E1(0,-4),E2(-,0);
②当∠OED=90°时,E3(0,-1),E4(-,0);
(3)可设I为△OA'B的内心连接BI,利用动点I到定点D的距离为2,即点I的轨迹是以点D为圆心,2为半径的弧OIB(不含点O、B),可求出弧OIB的长为,进而求出l的取值范围.
解答:(1)证明:∵直线y=x+2与y轴交于点A,与x轴交于点B
∴A(0,2),B(-2,0),
∴OA=2,0B=2,AB=4,
∴∠ABO=30°,∠BAO=60°,
∵∠BAO的平分线交⊙C于点D,
∴∠ABO=30°=∠BAD,
∴BD=AO;

(2)解:
①当∠ODE=90°时,点E的坐标为E1(0,-4),E2(-,0);
②当∠OED=90°时,E3(0,-1),E4(-,0);
∴符合点E的坐标有四个;

(3)解:
如图,设I为△OA'B的内心连接BI,连接BH,
∴∠A′BI=∠IBO,
∵BD=OD,∴∠BA′D=∠DBO,
∴∠A′BI+∠BA′D=∠IBO+∠OBD,即∠BID=∠IBD,
∴ID=BD,
∵BD=OA=2,∴ID=2,
∴动点I到定点D的距离为2,即点I的轨迹是以点D为圆心,2为半径的弧OIB(不含点O、B),
弧OIB的长为
则l的取值范围是0<l<
点评:本题需仔细分析题意,结合图形,利用勾股定理和圆的性质即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源:2005年山西省太原市中考数学试卷(大纲卷)(解析版) 题型:填空题

(2005•太原)如图,⊙O2与半圆Ol内切于点C,与半圆的直径AB切于点D,若AB=6,⊙O2的半径为1,则∠ABC的度数为    度.

查看答案和解析>>

科目:初中数学 来源:2005年山西省太原市中考数学试卷(大纲卷)(解析版) 题型:填空题

(2005•太原)如图是比例尺为1:200的铅球场地的示意图,铅球投掷圈的直径为2.135m,体育课上,某生推出的铅球落在投掷区的点A处,他的铅球成绩约为    m(精确到0.1m).

查看答案和解析>>

科目:初中数学 来源:2005年山西省太原市中考数学试卷(大纲卷)(解析版) 题型:选择题

(2005•太原)如图,在正方形ABCD中,点E、F分别在边BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2005年山西省太原市中考数学试卷(大纲卷)(解析版) 题型:选择题

(2005•太原)如图,两条直线a、b被第三条直线c所截,如果a∥b,∠1=50°,那么∠2的度数为( )

A.130°
B.100°
C.80°
D.40°

查看答案和解析>>

同步练习册答案