精英家教网 > 初中数学 > 题目详情
2.我们把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.如图,A、B、C、D分别是某蛋圆和坐标轴的交点其中抛物线的解析式为y=x2-2x-3,则“蛋圆”的弦CD的长为3+$\sqrt{3}$.

分析 连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.

解答 解:连接AC,BC,
∵抛物线的解析式为y=x2-2x-3,
∴点D的坐标为(0,-3),
∴OD的长为3,
设y=0,则0=x2-2x-3,
解得:x=-1或3,
∴A(-1,0),B(3,0)
∴AO=1,BO=3,
∵AB为半圆的直径,
∴∠ACB=90°,
∵CO⊥AB,
∴CO2=AO•BO=3,
∴CO=$\sqrt{3}$,
∴CD=CO+OD=3+$\sqrt{3}$,
故答案为:3+$\sqrt{3}$

点评 本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“蛋圆”的定义是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=4,DB=1,则CD的长为(  )
A.2B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{15}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在矩形ABCD中,BC=6,点E是AD边上一点,连接BE,∠ABE=30°,BE=DE,连接BD.点P在线段ED运动,过点P作PQ∥BD交BE于点Q.
(1)如图1,设PD=x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围);
(2)如图2,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G,求线段PG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=$\frac{底边}{腰}=\frac{BC}{AB}$.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°=1.
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是0<sadA<2.
(3)如图②,Rt△ABC中,已知sinA=$\frac{3}{5}$,其中∠A为锐角,试求sadA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.定义:如果二次函数y1=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y2=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求y=-x2+3x-2函数的“旋转函数”.小明是这样思考的:由y=-x2+3x-2函数可知a1=-1,b1=3,c1=-2,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.
请参考小明的方法解决下面的问题:
(1)写出函数y=-x2+3x-2的“旋转函数”;
(2)若函数y1=x2-$\frac{4n}{3}$x+n与y2=-x2+mx-3互为“旋转函数”,求(m+n)2016的值;
(3)已知函数y=2(x+1)(x-4)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,请指出经过点A1、B1、C1的二次函数与y=2(x+1)(x-4)是否互为“旋转函数”.填是 (是或不是).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,抛物线y=ax2+$\frac{9}{4}$经过△ABC的三个顶点,点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
(1)求该抛物线的函数关系表达式;
(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,已知长方形纸片ABCD,点E是AB的中点,点G是BC上一点,∠BEG=60°.沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.一次函数y=-$\frac{{\sqrt{3}}}{3}$x+1的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC
(1)求△ABC的面积和点C的坐标;
(2)如果在第二象限内有一点P(a,$\frac{1}{2}$),试用含a的代数式表示四边形ABPO的面积.
(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案