如图所示, 在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BD,设MN交∠BCA的平分线于点E, 交∠BCA的外角平分线于点F。
(1)求证:EO = FO。
(2)当点O运动到何处时,四边形AECF是矩形,并加以证明。
(3)满足什么条件时,四边形AECF是正方形,并加以证明。
证明:(1)∵MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F。
∴∠ECO = ∠BCE,∠DCF = ∠OCF
又∵直线MN ∥BC,
∴∠BCE = ∠CEO,∠DCF = ∠CFO
∴∠ECO = ∠CEO,∠CFO = ∠OCF
∴EO = CO,CO = FO
∴ EO = FO
(2)当点O运动到AC中点时,四边形AECF是矩形,
证明:当EO = FO时,O为EF的中点,
而当O为AC的中点时,说明四边形AECF是平行四边形
由(1)可知CO =EF,而CO =AC
∴EF = AC,所以四边形AECF是矩形。
(3)当点O运动到AC中点且∠ACB = 90°,四边形AECF是正方形。
证明:当∠ACB = 90°,∠CEO = ∠CFO = 45°
∴EC = CF,而当点O运动到AC中点时,四边形AECF是矩形
∴四边形AECF是正方形。
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com