精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,AB=AC,P底边BC上一点,PD⊥AB于D,PE⊥AC于E,CF⊥AB于F.
(1)求证:PD+PE=CF;
(2)若P点在BC的延长线上,那么PD、PE、CF存在什么关系?写出你的猜想并证明.
分析:(1)连接AP,根据等腰三角形的性质可表示出S△ABC=S△ABP+S△ACP=
1
2
×AB×(PD+PE),同时可表示出S△ABC=
1
2
AB×CF,从而可得到PD+PE=CF.
(2)CF+PE=PD,根据S△APB=S△ABC+S△ACP进行推理,证法同(1).
解答:精英家教网(1)证明:连接AP.
∵AB=AC,
∴S△ABC=S△ABP+S△ACP=
1
2
AB×PD+
1
2
AC×PE=
1
2
×AB×(PD+PE),
∵S△ABC=
1
2
AB×CF,
∴PD+PE=CF.

(2)解:CF+PE=PD.精英家教网
P点在BC的延长线上,过P做AB⊥PD,过C作AB⊥CF,过P作PE⊥AC,交AC的延长线于E点,连接AP
∵AB=AC,
∴S△APB=S△ABC+S△ACP=
1
2
AB×CF+
1
2
AC×PE=
1
2
×AB×(CF+PE),
∵S△APB=
1
2
AB×PD,
∴CF+PE=PD.
点评:此题主要考查等腰三角形的性质及三角形面积的综合运用,此题的关键是利用面积公式将所求联系在一起.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案