精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y4x与双曲线y交于AB两点,过B作直线BCy轴,垂足为C,则以OA为直径的圆与直线BC的交点坐标是_____

【答案】(﹣11)和(21).

【解析】

求得交点A、B的坐标,即可求得直径AB的长度和P点的坐标,从而求得PE的长度,利用勾股定理求得EM=EN=,结合P的坐标即可求得以OA为直径的圆与直线BC的交点坐标.

求得

A13),B31),

OA

OA的中点为P,以AB为直径的⊙P与直线BC的交点为MN

P点作PDx轴于D,交BCE,连接PN

POA的中点,

P),

PD

BCy轴,垂足为C

BCx轴,

PDBC

PE1

RtPEN中,EMEN

M(﹣11),N21).

∴以OA为直径的圆与直线BC的交点坐标是(﹣11)和(21),

故答案为(﹣11)和(21).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量(千克)与销售单价(元)符合一次函数关系,如图所示.

1)求之间的函数关系式,并写出自变量的取值范围;

2)若在销售过程中每天还要支付其他费用500元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,破残的圆形轮片上,弦AB的垂直平分线交ABC,交弦ABD.

(1)求作此残片所在的圆(不写作法,保留作图痕迹)

(2)AB24cmCD8cm,求(1)中所作圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乐至县城有两座远近闻名的南北古塔,清朝道光11年至13年(公元1831--1833年)修建,南塔名为文运塔,高30米;北塔名为凌云塔”.为了测量北塔的高度AB,身高为1.65米的小明在C处用测角仪CD,(如图所示)测得塔顶A的仰角为45°,此时小明在太阳光线下的影长为1.1米,测角仪的影长为1.随后,他再向北塔方向前进14米到达H处,又测得北塔的顶端A的仰角为60°,求北塔AB的高度.(参考数据≈1.414,≈1.732,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一坐标系中,二次函数与一次函数的图像可能是(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象与反比例函数的图象交于点,与轴交于点,若,且.

1)求反比例函数与一次函数的表达式;

2)若点x轴上一点,是等腰三角形,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b的图象分别交x轴,y轴于A4.0),B02)两点,与反比例函数y的图象交于CD两点,CEx轴于点ECE3

1)求反比例函数与一次函数的解析式;

2)根据图象直接写出:不等式0kx+b的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.

1)求该型号自行车的进价和标价分别是多少元?

2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出50辆;若每辆自行车每降价20元,每月可多售出5辆,求该型号自行车降价多少元时,每月可获利30000元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax25axca0)与x轴负半轴交于AB两点(点A在点B的左侧),与y轴交于C点,D是抛物线的顶点,过DDHx轴于点H,延长DHAC于点E,且SABDSACB916

1)求AB两点的坐标;

2)若△DBH与△BEH相似,试求抛物线的解析式.

查看答案和解析>>

同步练习册答案