精英家教网 > 初中数学 > 题目详情
先阅读第(1)题的解答过程,然后再解第(2)题.
(1)已知多项式2x3-x2+m有一个因式是2x+1,求m的值.
解法一:设2x3-x2+m=(2x+1)(x2+ax+b),
则:2x3-x2+m=2x3+(2a+1)x2+(a+2b)x+b
比较系数得
2a+1=-1
a+2b=0
b=m
,解得
a=-1
b=
1
2
m=
1
2
,∴m=
1
2

解法二:设2x3-x2+m=A•(2x+1)(A为整式)
由于上式为恒等式,为方便计算了取x=-
1
2

(-
1
2
)3-(-
1
2
)2+m
=0,故 m=
1
2

(2)已知x4+mx3+nx-16有因式(x-1)和(x-2),求m、n的值.
分析:设x4+mx3+nx-16=A(x-1)(x-2),对x进行两次赋值,可得出两个关于m、n的方程,联立求解可得出m、n的值.
解答:解:设x4+mx3+nx-16=A(x-1)(x-2)(A为整式),
取x=1,得1+m+n-16=0①,
取x=2,得16+8m+2n-16=0②,
由①、②解得m=-5,n=20.
点评:本题考查了因式分解的意义,阅读材料中提供了两种解题思路,同学们可以自己探索第二种解题方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

先阅读下列第(1)题的解答过程,再解第(2)题.
(1)已知实数a、b满足a2=2-2a,b2=2-2b,且a≠b,求
a
b
+
b
a
的值.
解:由已知得:a2+2a-2=0,b2+2b-2=0,且a≠b,故a、b是方程:x2+2x-2=0的两个不相等的实数根,由根与系数的关系得:a+b=-2,ab=-2.
a
b
+
b
a
=
(a+b)2-2ab
ab
=-4.
(2)已知p2-2p-5=0,5q2+2q-1=0,其中p、q为实数,求p2+
1
q2
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

先阅读第(1)小题的解法,再解答第(2)小题.
(1)已知a,b是有理数,a≠0,并且满足5-
3
a=2b+
2
3
3
-a
,求a,b的值.
解:因为2b+
2
3
3
-a=(2b-a)+
2
3
3
,而2b+
2
3
3
-a=5-
3
a

所以
2b-a=5
-a=
2
3
,故a=-
2
3
,b=
13
6

(2)设x,y是有理数,y≠0,并且满足x2+2y+
2
y=17-4
2
,求x,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

先阅读第(1)题的解答过程,然后再解第(2)题.
(1)已知多项式2x3-x2+m有一个因式是2x+1,求m的值.
解法一:设2x3-x2+m=(2x+1)(x2+ax+b),
则:2x3-x2+m=2x3+(2a+1)x2+(a+2b)x+b
比较系数得数学公式,解得数学公式,∴数学公式
解法二:设2x3-x2+m=A•(2x+1)(A为整式)
由于上式为恒等式,为方便计算了取数学公式
数学公式=0,故 数学公式
(2)已知x4+mx3+nx-16有因式(x-1)和(x-2),求m、n的值.

查看答案和解析>>

科目:初中数学 来源:期末题 题型:解答题

先阅读下面(1)题的解答过程,然后解答第(2)题
 
(1)已知,如图(1)所示,△ABC中,D、E分别是边AB、AC上的中点,连结DE。试说明DE与BC的关系。
解:DE与BC的关系为DE∥BC且DE=BC。
理由如下:
将△ADE绕点D旋转180°到△BDF位置
根据旋转的特征,有F、D、E三点在同一直线上
∴DF=DE,BF=AE,且BF∥AE,
∴∠1=∠A,∠F=∠2
∵AE=EC
∴BF=EC
由于一组对边平行且相等的四边形为平行四边形
∴四边形FBCE是平行四边形
∴FE∥BC且FE=BC
即DE∥BC,DE=BC。
(2)已知:如图(2)所示,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,连结EF,试问你能根据(1)题的结论,说明EF∥BC,且EF=(AD+BC)吗?

查看答案和解析>>

同步练习册答案