精英家教网 > 初中数学 > 题目详情

【题目】如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.

(1)求证:BD=CD;
(2)若圆O的半径为3,求 的长.

【答案】
(1)证明:∵四边形ABCD内接于圆O,

∴∠DCB+∠BAD=180°,

∵∠BAD=105°,

∴∠DCB=180°﹣105°=75°,

∵∠DBC=75°,

∴∠DCB=∠DBC=75°,

∴BD=CD;


(2)解:∵∠DCB=∠DBC=75°,

∴∠BDC=30°,

由圆周角定理,得, 的度数为:60°,

= = =π,

答: 的长为π.


【解析】此题主要考查了弧长公式应用以及圆周角定理等知识,根据题意得出∠DCB的度数是解题关键.(1)直接利用圆周角定理得出∠DCB的度数,再利用∠DCB=∠DBC求出答案;(2)首先求出 的度数,再利用弧长公式直接求出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE= CD,从而得出结论:AC+BC= CD.
简单应用:

(1)在图①中,若AC= ,BC=2 ,则CD=
(2)如图③,AB是⊙O的直径,点C、D在⊙上, = ,若AB=13,BC=12,求CD的长.
拓展规律:
(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)
(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE= AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在⊙O中,AB为直径,C为⊙O上一点.

(1)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;
(2)如图2,D为 上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是(
A.16π
B.36π
C.52π
D.81π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.
(1)求证:AG与⊙O相切.
(2)若AC=6,AB=8,BE=3,求线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O为坐标原点,A,B,C三点的坐标为( ,0)、(3 ,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC、△DCE、△FEG为等边三角形,边长分别为2、3、5,且从左至右如图排列,连接BF,交DC、DE分别于M、N两点,则△DMN的面积为

查看答案和解析>>

同步练习册答案