(1)已知x2+y-2x+4y=-5,求x,y.
(2)a,b满足a(a+1)-(a2+2b)=1,求a2-4ab+4b2-2a+4b的值.
(3)已知a2+b2=5,a+b=3,求(a-b)2.
(4)已知x2-y2=20,求[(x-y)2+4xy][(x+y)2-4xy]的值.
解:(1)x2+4x+y2-2y+5=0,
变形为:(x2+4x+4)+(y2-2y+1)=0,
即(x+2)2+(y-1)2=0,
又因(x+2)2与(y-1)2皆是非负数,
所以(x+2)2=0且(y-1)2=0,
即x+2=0,y-1=0,
解得x=-2,y=1;
答:x=-2,y=1.已知x2+y--2x+4y=-5,求x,y.
解:x=1,y=-2
(2)∵a(a+1)-(a2+2b)=1,
∴a-2b=1,
∴a2-4ab+4b2-2a+4b=(a-2b)2-2(a-2b)=1-2=-1;
(3)∵a2+b2=5,a+b=3,
∴ab=2
∴(a-b)2.=(a+b)2-4ab=9-8=1
(4)已知x2-y2=20,求[(x-y)2+4xy][(x+y)2-4xy]的值.
解:[(x-y)2+4xy][(x+y)2-4xy]
=(x+y)2(x-y)2
=[(x+y)(x-y)]2
=[x2-y2]2
=400
分析:(1)先对原式变形,可得两个平方项的和,由非负数的性质可得x、y的值.
(2)首先将原始整理a-2b=1,然后代入后面的代数式求解即可;
(3)首先根据a2+b2=5,a+b=3求得ab的值,然后代入(a-b)2求解即可.
(4)将代数式变形后代入已知条件即可求解.
点评:本题考查了因式分解的应用,解题的关键是对代数式进行正确的因式分解.