精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线经过A(﹣1,0),B(5,0),C(0,- )三点.

(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

【答案】
(1)

解:设抛物线的解析式为y=ax2+bx+c(a≠0),

∵A(﹣1,0),B(5,0),C(0,- )三点在抛物线上,

解得

∴抛物线的解析式为:y= x2﹣2x﹣


(2)

解:∵抛物线的解析式为:y= x2﹣2x﹣

∴其对称轴为直线x=﹣ =﹣ =2,

连接BC,如图1所示,

∵B(5,0),C(0,﹣ ),

∴设直线BC的解析式为y=kx+b(k≠0),

解得

∴直线BC的解析式为y= x﹣

当x=2时,y=1﹣ =﹣

∴P(2,﹣


(3)

解:存在.

如图2所示,

①当点N在x轴下方时,

∵抛物线的对称轴为直线x=2,C(0,﹣ ),

∴N1(4,﹣ );

②当点N在x轴上方时,

如图,过点N2作N2D⊥x轴于点D,

在△AN2D与△M2CO中,

∴△AN2D≌△M2CO(ASA),

∴N2D=OC= ,即N2点的纵坐标为

x2﹣2x﹣ =

解得x=2+ 或x=2﹣

∴N2(2+ ),N3(2﹣ ).

综上所述,符合条件的点N的坐标为(4,﹣ ),(2+ )或(2﹣ ).


【解析】(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,- )三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰ABC中,∠A=80°,B和∠C的平分线相交于点O

(1)连接OA,求∠OAC的度数;

(2)求:∠BOC。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过A(﹣1,0),B(5,0),C(0,- )三点.

(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,若“摸出的球是黑球”为必然事件,求m的值;
(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于 ,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在第1ABA1B=40°BAA1=∠BA1AA1B上取一点C延长AA1A2使得在第2A1CA2A1CA2=∠A1 A2CA2C上取一点D延长A1A2A3使得在第3A2DA3A2DA3=∠A2 A3D按此做法进行下去3个三角形中以A3为顶点的内角的度数为 n个三角形中以An为顶点的内角的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中 的长是cm(计算结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA,PB,PC,若PA=a,则点A到PB和PC的距离之和AE+AF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于二次函数y=﹣ +x﹣4,下列说法正确的是(
A.当x>0时,y随x的增大而增大
B.当x=2时,y有最大值﹣3
C.图象的顶点坐标为(﹣2,﹣7)
D.图象与x轴有两个交点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明用的练习本,一般在甲、乙两家文具店购买,已知两家文具店的标价都是每本1元,但甲文具店的优惠条件是一次购买10本以上,从第11本起按标价的70%卖;乙文具店的优惠条件是全部按八五折优惠.

(1)若小明打算买30本,到哪家店购买省钱?

(2)小明现有38元钱,最多可买多少本练习本?

查看答案和解析>>

同步练习册答案