精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=BDE.

(1)求证:AC是⊙O的切线;

(2)连接OCBE于点F,若,求的值.

【答案】(1)证明见解析;(2)

【解析】

试题(1)连接OE,证得OEAC即可确定AC是切线;
(2)根据OEBC,分别得到△AOE∽△ACB和△OEF∽△CBF,利用相似三角形对应边的比相等找到中间比即可求解.

试题解析:解:(1)连接OE

OB=OE,∴∠OBE=∠OEB

∵∠ACB=90°,∴∠CBE+∠BEC=90°.

BDO的直径,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠CBE=∠DBE,∴∠CBE=∠OEB,∴OEBC,∴∠OEA=∠ACB=90°,即OEAC,∴ACO的切线

(2)∵OEBC,∴AOEABC,∴OEBC=AEAC

CEAE=2:3,∴AEAC=3:5,∴OEBC=3:5.

OEBC,∴OEFCBF,∴

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.

(1)yx的函数关系式并直接写出自变量x的取值范围;

(2)设每月的销售利润为W,请直接写出Wx的函数关系式;

(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下列材料:

问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1、求BPC度数的大小和等边三角形ABC的边长.

小刚同学的思路是:将BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得P′PC是等边三角形,而PP′A又是直角三角形(由勾股定理的逆定理可证),所以APB=150°,而∠BPC=∠AP′B=150°,进而求出等边ABC的边长为,问题得到解决.

请你参考小刚同学的思路,探究并解决下列问题:

如图3,在正方形ABCD内有一点P,且PA=,BP=2,PC=.求BPC度数的大小和正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.

(1)求该抛物线的解析式和顶点坐标;

(2)过点Px轴的平行线l,若点Q是直线上的动点,连接QB.

①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;

②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点

(1)求这个二次函数的解析式;

(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线ACBD相交于点O,正方形A1B1C1O的边OA1AB于点EOC1BC于点F

1)求证:(BE+BF2=2OB2

2)如果正方形ABCD的边长为a,那么正方形A1B1C1OO点转动的过程中,与正方形ABCD重叠部分的面积始终等于     (用含a的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次你最喜欢的书籍问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):

请根据图中提供的信息,完成下列问题:

1)在这次问卷调查中,一共抽查了 名学生;并在图中补全条形统计图;

2)如果全校共有学生1600名,请估计该校最喜欢科普书籍的学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于等腰三角形,有以下说法:

1)有一个角为的等腰三角形一定是锐角三角形

2)等腰三角形两边的中线一定相等

3)两个等腰三角形,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等

4)等腰三角形两底角的平分线的交点到三边距离相等

其中,正确说法的个数为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边上,点与点在直线的同侧,若点内部,试问的大小是否满足某种确定的数量关系?

1)特殊探究:若,则_________度,________度,_________度;

2)类比探索:请猜想的关系,并说明理由;

3)类比延伸:改变点的位置,使点外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出满足的数量关系式.

查看答案和解析>>

同步练习册答案