【题目】如图,抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,与y轴交于C点,M点在抛物线的对称轴上,当点M到点B的距离与到点C的距离之和最小时,点M的坐标为_____.
【答案】(﹣1,2).
【解析】
因为点B关于对称轴的对称点为点A,连接AC,设直线AC与对称轴x=﹣1的交点为M,则此时MB+MC的值最小,再求得点M的坐标即可.
∵抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,令y=0,得:﹣x2﹣2x+3=0,解得:x=-3或x=1,∴点A(﹣3,0),C(0,3).
设直线AC的解析式为y=kx+b,把A(﹣3,0)、C(0,3)分别代入直线y=kx+b,得:
,解得:,∴直线AC解析式为y=x+3;
设直线AC与对称轴x=﹣1的交点为M,则此时MB+MC的值最小.
把x=﹣1代入直线y=x+3得:y=2,∴M(﹣1,2).
即当点M到点B的距离与到点C的距离之和最小时M的坐标为(﹣1,2).
故答案为:(﹣1,2).
科目:初中数学 来源: 题型:
【题目】正比例函数y=x的图象与反比例函数的图象有一个交点的纵坐标是2,求:
(1)x=﹣3时反比例函数的值;
(2)当﹣3<x<﹣1时反比例函数y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,请解答下面的问题,并写出探索主要过程:
(1)经过多少时间后,P、Q两点的距离为5cm?
(2)经过多少时间后,的面积为15cm2?
(3)设运动时间为t,用含t的代数式表示△PCQ的面积,并用配方法说明t为何值时△PCQ的面积最大,最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P的横坐标为x,纵坐标为2x,满足这样条件的点称为“关系点”.
(1)在点A(1,2)、B(2,1)、M(,1)、N(1, )中,是“关系点”的为 ;
(2)⊙O的半径为1,若在⊙O上存在“关系点”P,求点P坐标;
(3)点C的坐标为(3,0),若在⊙C上有且只有一个“关系点”P,且“关系点”P的横坐标满足-2≤x≤2.请直接写出⊙C的半径r的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.
(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;
(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点D是等腰直角△ABC的重心,其中∠ACB=90°,将线段CD绕点C逆时针旋转90°得到线段CE,连结DE,若△ABC的周长为6,则△DCE的周长为( )
A. 2 B. 2 C. 4 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:点E、F为线段BD的两个三等分点,四边形AECF是菱形,且菱形AECF的周长为20,BD为24,则四边形ABCD的面积为( )
A.24B.36C.72D.144
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A、B的坐标分别为(10,0)、(0,4),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C以每秒1个单位匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线垂直时,点P运动的时间为_____秒.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com