【题目】如图,在小正方形的边长均为1的方格纸中,有线段和线段,点均在小正方形的顶点上.
(1)在方格纸中画出以为斜边的直角三角形,点E在小正方形的顶点上,且的面积为5;
(2)在方格纸中画出以为一边的,点在小正方形的顶点上,的面积为4,射线与射线交于点,且,连接,请直接写出线段的长.
【答案】(1)见解析;(2)作图见解析,EF= .
【解析】
(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;
(2)根据题意利用等腰直角三角形的性质结合勾股定理得出符合题意的图形.
解:(1)根据题意可知:AB=,因为、、 恰好构成以AB为斜边的直角三角形,且面积= ,由此画出图形,如图所示:△ABE即为所求;
(2)根据题意可知:CD= ,以CD为底,高为 的三角形面积为4,由此画出△CDF,观察可得BE∥CF,∵∠ABE=45°,∴延长AB、CF交于点N,∠CNA=∠ABE=45°,
如图所示:点N,F即为所求,EF=.
故答案为:(1)见解析;(2)作图见解析,EF= .
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+b分别交x,y轴于点A、C,抛物线y=ax2+x+4经过A、C两点,交x轴于另外一点B.
(1)求抛物线的解析式;
(2)点P在第一象限内抛物线上,连接PB、PC,作平行四边形PBDC,DE⊥y轴于点E,设点P 的横坐标为t,线段DE的长度为d,求d与t之间的函数关系式.
(3)在(2)的条件下,延长BD交直线AC与点F,连接OF,若∠AFO=∠BFO,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=a(x+1)(x﹣3)与x轴交于A、B两点,抛物线与x轴围成的封闭区域(不包含边界),仅有4个整数点时(整数点就是横纵坐标均为整数的点),则a的取值范围_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是( )
A. ≤m<1B. <m≤1C. 1<m≤2D. 1<m<2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.
根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐( )
A. 李飞或刘亮 B. 李飞 C. 刘亮 D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.
探究一:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.
因为正方形ABCD的面积为1,则正方形EFGH的面积为2,
所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,
∵Rt△AEB≌Rt△BFC
∴BF=AE=﹣x
在Rt△AEB中,由勾股定理,得
x2+(﹣x)2=12
解得,x1=x2=
∴BE=BF,即点B是EF的中点.
同理,点C,D,A分别是FG,GH,HE的中点.
所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍
探究二:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)
探究三:巳知边长为1的正方形ABCD, 一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)
探究四:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍?(n>2)(仿照上述方法,完成探究过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲.乙两人进行跑步训练,他们所跑的路程y(米)与时间x(秒)之间的关系如图所示,则下列说法错误的是( )
A. 离终点40米处,乙追上甲B. 甲比乙迟3秒到终点
C. 甲跑步的速度是5米/秒D. 乙跑步的速度是米/秒
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)
(1)等奖所占的百分比是________;三等奖的人数是________人;
(2)据统计,在获得一等奖的学生中,男生与女生的人数比为,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;
(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com