精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°AO=BO,点A的坐标为(-31)

(1)求点B的坐标;

(2)求过AOB三点的抛物线的解析式;

(3)设点B关于抛物线的对称轴的对称点为B1,求△AB1B的面积.

【答案】(1)B的坐标为(13)(2)y=x2+x(3)=.

【解析】

1)过点AACx轴,垂足为C,作BDx轴垂足为D,可证明△AOC△BOD,则B点的横坐标即为A点的坐标轴,B的纵坐标是A点的横坐标的绝对值,因此可求出B的坐标;(2)已知A,O的坐标,根据(1)求出的B点坐标,用待定系数法求出抛物线的解析式;(3)根据(2)的解析式可得出对称轴的解析式,根据B点坐标得出B1坐标,则BB1就是三角形的底边,B的纵坐标与A的纵坐标的查的绝对值就是△ABB1的高,因此可求出其面积.

1)过点AACx轴,垂足为C,作BDx轴垂足为D

∠ACO=∠ODB=90°,

∠AOC+∠OAC=90°

∠AOB=90°

∠AOC+BOD=90°,

∴∠OAC=BOD

AO=BO

△AOC△BODAAS

OD=AC=1DB=OC=3

B的坐标为(1,3

2)因抛物线过原点,

设所求的抛物线解析式为y=ax2+bx,

A-31),B1,3)代入

解得a=b=

∴所求的抛物线解析式为y=x2+x

3)在y=x2+x中,对称轴

B1是点B关于抛物线的对称轴的对称点,

B13

△ABB1中,底边B1B=,高为2

S△ABB1=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣2mx+m2+1(m为常数),当自变量x的值满足﹣3≤x≤﹣1时,与其对应的函数值y的最小值为5,则m的值为(  )

A. 1或﹣3 B. ﹣3或﹣5 C. 1或﹣1 D. 1或﹣5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边ABC,以AB为直径的圆与BC边交于点D,过点DDFAC,垂足为F,过点FFGAB,垂足为G,连结GD

1)求证:DF是⊙O的切线;

2)若AB12,求FG的长;

3)在(2)问条件下,求点DFG的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BDABC外接圆⊙O的直径,且∠BAE=C.

(1)求证:AE与⊙O相切于点A;

(2)若AEBC,BC=2,AC=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】线段ABCD在平面直角坐标系中位置如图所示,O为坐标原点.若线段AB上一点P的坐标为(ab),则直线OP与线段CD的交点坐标为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】七巧板是我们祖先的一项卓越创造,被西方人誉为东方魔板.下面的两幅图正方形(如图1)、风车型(如图2)都是由同一副七巧板拼成的,则图中正方形ABCDEFGH的面积比为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,抛物线ya( x4 )216a>0)交x轴于点EFEF的左边),交y轴于点C,对称轴MNx轴于点H;直线yxb分别交xy轴于点AB

1)写出该抛物线顶点D的坐标及点C的纵坐标(用含a的代数式表示).

2)若AF=AH=OH,求证:∠CEO=ABO.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一只拉杆式旅行箱如图1,其侧面示意图如图2所示,已知箱体长AB=50 cm,拉杆BC的伸长距离最大时可达35 cm,点ABC在同一条直线上,在箱体底端装有圆形的滚轮⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B到水平地面MN的距离为38 cm时,点C到水平面的距离CE59 cm.设AFMNAFCE于点G(精确到1 cm,参考数据:sin64°≈0.90cos64°≈0.39tan64°≈2.1

(1)求⊙A的半径长;

(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE80 cm,∠CAF=64°.求此时拉杆BC的伸长距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线ACBD相交于点OAECF

(1)求证:BOE≌△DOF

(2)若BDEF,连接DEBF,判断四边形EBFD的形状,并说明理由.

查看答案和解析>>

同步练习册答案