精英家教网 > 初中数学 > 题目详情

实验与探究
(1)在图1、图2、图3中,给出平行四边形ABCD的顶点A、B、D的坐标,写出图1、图2、图3中的顶点C的坐标,它们分别是______,______.
(2)在图4中,给出平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);


归纳与发现
(3)通过对图1、图2、图3、图4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点C坐标为(m,n)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______(不必证明);
运用与推广
(4)在同一直角坐标系中有双曲线数学公式和三个点数学公式,H(2c,0)(其中c>0).问当c为何值时,该双曲线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.

解:(1)利用平行四边形的性质:对边平行且相等,
得出图1、图2,3中顶点C的坐标分别是:(5,2)、(e+c,d),(c+e-a,d).
故答案为:(5,2)、(e+c,d),(c+e-a,d).

(2)分别过点A,B,C,D作x轴的垂线,垂足分别为A1,B1,C1,D1
分别过A,D作AE⊥BB1于E,DF⊥CC1于点F.
在平行四边形ABCD中,CD=BA,
又∵BB1∥CC1
∴∠EBA+∠ABC+∠BCF=∠ABC+∠BCF+∠FCD=180度.
∴∠EBA=∠FCD.
又∵∠BEA=∠CFD=90°,
∴△BEA≌△CFD.
∴AE=DF=a-c,BE=CF=d-b.
设C(x,y).
由e-x=a-c,得x=e+c-a.
由y-f=d-b,得y=f+d-b.
∴C(e+c-a,f+d-b).
(此问解法多种,可参照评分)

(3)m=c+e-a,n=d+f-b或m+a=c+e,n+b=d+f.

(4)若GS为平行四边形的对角线,由(3)可得P1(-2c,7c).
要使P1在双曲线上,
则有-14c2=-14,
∴c1=-1(根据其中c>0,舍去),c2=1.此时P1(-2,7).
若SH为平行四边形的对角线,由(3)可得P2(3c,2c),
同理可得c=1,此时P2(3,2)不在双曲线上.
若GH为平行四边形的对角线,由(3)可得(c,-2c),
同理可得c=1,此时P3(1,-2)不在双曲线上.
综上所述,当c=1时,双曲线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形.
符合条件的点有P1(-2,7).
分析:(1)根据平行四边形的性质:对边平行且相等,得出图2,3中顶点C的坐标分别是(e+c,d),(c+e-a,d);
(2)分别过点A,B,C,D作x轴的垂线,垂足分别为A1,B1,C1,D1,分别过A,D作AE⊥BB1于E,DF⊥CC1于点F.在平行四边形ABCD中,CD=BA,根据内角和定理,又∵BB1∥CC1,可推出∠EBA=∠FCD,△BEA≌△CFD.依题意得出AF=DF=a-c,BE=CF=d-b.设C(x,y).由e-x=a-c,得x=e+c-a.由y-f=d-b,得y=f+d-b.继而推出点C的坐标.
(3)在平行四边形ABCD中,CD=BA,同理证明△BEA≌△CFD(同(2)证明).然后推出AF=DF=a-c,BE=CF=d-b.又已知C点的坐标为(m,n),e-m=a-c,故m=e+c-a.由n-f=d-b,得出n=f+d-b.
(4)若GS为平行四边形的对角线,由(3)可得P1(-2c,7c).要使P1在双曲线上,则有-14c2=-14,求出c的实际取值以及P1的坐标,若SH为平行四边形的对角线,由(3)可得P2(3c,2c),同理可得c=1,此时P2(3,2);若GH为平行四边形的对角线,由(3)可得(c,-2c),同理可得c=1,此时P3(1,-2);故综上所述可得解.
点评:此题主要考查了平行四边形的性质,平面直角坐标系内的坐标,平行线的性质等知识.理解平行四边形的特点结合平面直角坐标系是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是
 
 

精英家教网
(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);
精英家教网
归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为
 
;纵坐标b,d,n,f之间的等量关系为
 

(不必证明);运用与推广:
(4)在同一直角坐标系中有抛物线y=x2-(5c-3)x-c和三个点G(-
1
2
c,
5
2
c)
S(
1
2
c,
9
2
c)
,H(2c,0)(其中c>0).问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
(1)问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及
PG
PC
的值.
(2)实验与探究:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
写出上面问题中线段PG与PC的位置关系
垂直
垂直
; 及
PG
PC
=
3
3

(3)归纳与发现:将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
运用与拓广:
若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出
PG
PC
的值(用含α的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,函数y=x的图象l是第一、三象限的角平分线.
(1)实验与探究:由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出它们的坐标:B′
(3,5)
(3,5)
、C′
(5,-2)
(5,-2)

(2)归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线l的对称点P′的坐标为
(n,m)
(n,m)

(3)类比与猜想:坐标平面内任一点P(m,n)关于第二、四象限的角平分线的对称点P′的坐标为
(-n,-m)
(-n,-m)

(4)运用与拓广:已知两点D(0,-3)、E(-1,-4),试在第一、三象限的角平分线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

实验与探究
(1)在图1、图2、图3中,给出平行四边形ABCD的顶点A、B、D的坐标,写出图1、图2、图3中的顶点C的坐标,它们分别是
(5,2)、(e+c,d)
(5,2)、(e+c,d)
(e+c-a,d)
(e+c-a,d)

(2)在图4中,给出平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);


归纳与发现
(3)通过对图1、图2、图3、图4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点C坐标为(m,n)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为
m=c+e-a
m=c+e-a
;纵坐标b,d,n,f之间的等量关系为
n=d+f-b
n=d+f-b
(不必证明);
运用与推广
(4)在同一直角坐标系中有双曲线y=-
14
x
和三个点G(-
1
2
c,
5
2
c),S(
1
2
c,
9
2
c)
,H(2c,0)(其中c>0).问当c为何值时,该双曲线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.

查看答案和解析>>

同步练习册答案