精英家教网 > 初中数学 > 题目详情

【题目】有一列数,第一个数为x1=1,第二个数为x2=3,从第三个数开始依次为x3,x4,…,xn,….从第二个数开始,每个数是左右相邻两个数和的一半,如x2,x3.

(1)求x3,x4,x5的值,并写出计算过程;

(2)根据(1)的结果,推测x9等于多少;

(3)探索这一列数的规律,猜想第k(k为正整数)个数xk等于多少.

【答案】(1)x3=5,x4=7,x5=9(2)17(3)xk=2k-1

【解析】

根据题中给出的关系式求解即可,关键是找到规律: ,同理可得.

(1)x3=2x2-x1=2×3-1=5,

x4=2x3-x2=2×5-3=7,

x5=2x4-x3=2×7-5=9.

(2)由(1)可知x9=9+2+2+2+2=17.

(3)xk=2k-1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

学习了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对两个三角形满足两边和其中一边的对角对应相等的情形进行研究

小聪将命题用符号语言表示为:在ABCDEF中,AC=DFBC=EFB=E

小聪的探究方法是对∠B分为直角、钝角、锐角三种情况进行探究.

第一种情况:当∠B 是直角时,如图1ABCDEF中,AC=DFBC=EFB=E=90°,根据“HL”定理,可以知道RtABCRtDEF

第二种情况:当∠B 是锐角时,如图2BC=EFB=E90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则ABCDEF的关系是   

A.全等 B.不全等 C.不一定全等

第三种情况:当∠B是钝角时,如图3,在ABCDEF中,AC=DFBC=EFB=E90°.过点CAB边的垂线交AB延长线于点M;同理过点FDE边的垂线交DE延长线于N,根据“ASA”,可以知道CBM≌△FEN,请补全图形,进而证出ABC≌△DEF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2﹣2x+1.
(1)求它的对称轴和顶点坐标;
(2)根据图象,确定当x>2时,y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列条件:①∠A=∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=90°+∠B;④∠A=∠B=∠C,能确定△ABC是直角三角形的条件有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.

(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;

(2)|b-1|+|a-1|=________;

(3)化简:|a+b|+|a-c|-|b|+|b-c|.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知DGBCACBCEFAB1=2,求证:CDAB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线AB∥CD

1)如图1,直接写出∠ABE∠CDE∠BED之间的数量关系是   

2)如图2BFDF分别平分∠ABE∠CDE,那么∠BFD∠BED有怎样的数量关系?请说明理由.

3)如图3,点E在直线BD的右侧,BFDF仍平分∠ABE∠CDE,请直接写出∠BFD∠BED的数量关系   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某绿色无公害蔬菜基地有甲、乙两种植户,他们们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:

种植户

种植A类蔬菜面积(单位:亩)

种植B类蔬菜面积(单位:亩)

总收入(单位:元)

1

3

13500

2

2

13000

说明:不同种植户种植的同类蔬菜每亩平均收入相等

(1)求A、B两类蔬菜每亩平均收入各是多少元?

(2)今年甲、乙两种植户联合种植,计划合租50亩地用来种植A、B两类蔬菜,为了使总收入不低于16400元,问联合种植最多可以种植A类蔬菜多少亩?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知O为直线AB上一点,∠COE是直角,OF平分∠AOE.

(1)如图①,若∠COF=34°,则∠BOE=________;若∠COF=n°,则∠BOE=________;∠BOE与∠COF的数量关系为________________.

(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.

(3)在图③中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案